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1 Introduction

The bilevel optimization problem (BOP) is an optimization problem (called the upper level problem in
what follows) whose constraint region is determined implicitly by the graph of the solution set mapping of
another mathematical optimization problem (the lower level problem) [8]. It is a nonconvex and nonsmooth
optimization problem. Therefore, solving BOP is not an easy task: even in the linear case, the problem
is NP-hard, see [15, 17]. However, the BOP plays an important role in different fields such as economics,
transportation, engineering, supply chain planning etc., see [5, 6, 7, 10, 12]. It attracts many researchers
to investigate efficient solution approaches such as extreme-point search approaches, branch-and-bound
approaches, descent methods, complementary pivoting methods, penalty function methods, trust region
methods and so on, see e.g. the bibliography [9].

Referring to the work of H.v. Stackelberg [20], special cases of the bilevel optimization problem are
called Stackelberg games of two players, the leader and the follower. Here, the players act according to
an hierarchical order, the leader has the first choice, the follower reacts optimally on the leader’s selection
and the leader has to respect the follower’s decision in finding an optimal decision. While the lower level
problem is the follower’s optimization problem, the leader solves the upper level problem.

If the lower level problem does not have a uniquely determined optimal solution, this problem is not
well-posed since the objective function value of the upper level problem may depend on the optimal solution
of the lower level problem, see [8]. Two ways out of this situation are the use of the optimistic or of the
pessimistic approach. In the optimistic approach, the leader supposes that the follower is willing to support
him, i.e. that the follower will select a solution out of the set of optimal solutions for the lower level problem
which is best from the leader’s point of view. In fact, the optimistic situation seems to be infeasible when
the cooperation is not allowed or when the follower’s seriousness of keeping the agreement is not granted.
Then, it is necessary for the leader to consider the damage resulting from an undesirable selection of the
follower, that is, considering a pessimistic situation is reasonable. There are some articles available where
pessimistic bilevel optimization problems are studied, see [1, 13, 14, 21, 23, 24].

Dempe et al. [14] investigated several types of lower subdifferential necessary optimality conditions
using the optimal value function approach, the Karush - Kuhn - Tucker representation of lower-level optimal
solution maps and upper subdifferential necessary optimality conditions for pessimistic bilevel optimization.
Wiesemann et al. [21, 23] presented existence conditions for optimal solutions of the pessimistic bilevel
optimization problem and developed algorithms convergent to solutions of these problems with continuous
functions. Aboussoror et al. [1] studied the pessimistic linear bilevel optimization problems via an exact
penalty method. Recently, a combination of optimistic and pessimistic linear bilevel optimization problems
have been explored in [24] which can be viewed as an extension of the approach described in [1].

In this paper, we consider the pessimistic linear bilevel optimization problem

min
x∈K

max
y∈Ψ(x)

{a>x+ b>y} (1.1)

1



Pessimistic Bilevel Linear Optimization

where

Ψ(x) := {z ∈ Rm : Dz = d−Ax, z ≥ 0, c>z = ϕ(x)} (1.2)

with

ϕ(x) := min
y
{c>y : Dy = d−Ax, y ≥ 0} (1.3)

denotes the solution-set mapping of the lower level optimization problem. The function ϕ(·) is called the
optimal value function of the lower level problem.

Here, K is assumed to be a nonempty compact subset of Rn, x ∈ Rn, y ∈ Rm denote upper and lower
level decision variables, a ∈ Rn, b ∈ Rm, c ∈ Rm, d ∈ Rl are constant vectors, A ∈ Rl×n, D ∈ Rl×m are
constant matrices and the symbol > denotes the transposition of a vector or a matrix. Moreover,

ϕp(x) := max
y
{b>y : y ∈ Ψ(x)} (1.4)

is the pessimistic two-level value function.
Then, (1.1) can be replaced by

min
x
{a>x+ ϕp(x) : x ∈ K}. (1.5)

In the subsequent sections, we focus on a tractable formulation and the existence of an optimal solution
for problem (1.5).

The organization of the paper is as follows. Section 2 investigates the pessimistic bilevel linear optimiza-
tion problem with linear constraints and obtains an equivalent single-level optimization formulation. Using
this formulation, a simple algorithm for computing a global optimal solution is presented. The bilevel op-
timization problem is a nonconvex optimization problem. Hence, the calculation of local optimal solutions
seems to be more practical. In Section 3, a descent algorithm is proposed for the computation of such a
local optimum.

A small example is presented in Section 4 to explain the feasibility and reasonability of the descent
algorithm. Section 5 contains some conclusions.

2 Global Optimal Solution of Pessimistic Bilevel Linear
Optimization

By linear optimization sensitivity, the set valued mapping x 7→ Ψ(x) is a Lipschitz-continuous mapping
[11, 16] and the function x 7→ ϕ(x) is Lipschitz-continuous, it is piecewise affine linear and convex, see [3].
This implies that the function x 7→ ϕp(x) is also Lipschitz-continuous, see e.g. [2, 18]. Hence, problem (1.1)
has an optimal solution if the set K is nonempty and compact.

For fixed x ∈ K, problem (1.4) is a linear optimization problem, its dual linear optimization problem is

min
s,γ
{s>(d−Ax) + γϕ(x) : D>s+ γc ≥ b}. (2.1)

This problem is again a linear optimization problem, and an optimal solution (s, γ) can be found at a
vertex of the set of feasible points {(s, γ) ∈ Rl×R : D>s+γc ≥ b}. The following theorem on the relations
between problems (1.4) and (2.1) can be found in all textbooks on linear optimization, see e.g. [22, Section
5.2].

Theorem 2.1. Let x̂ ∈ K be fixed, ŷ be a feasible solution for problem (1.4) and (ŝ, γ̂) be feasible for
problem (2.1). Then, the following properties are equivalent:

1. ŷ is optimal for (1.4) for x = x̂, (ŝ, γ̂) is optimal for (2.1) with x = x̂.

2. b>ŷ = ŝ>(d−Ax̂) + γ̂ϕ(x̂).

3. 0 = ŝ>Dŷ + γ̂c>ŷ − b>ŷ.
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Let (s, γ) be a vertex of the set {(s, γ) : D>s+ γc ≥ b}. Then, a point y(x) satisfying

0 = s>Dy(x) + γc>y(x)− b>y(x) (2.2)

is an optimal solution of (1.4) as long as it is feasible for this problem:

Dy(x) = d−Ax, y(x) ≥ 0, c>y(x) = ϕ(x),

i.e. as long as it is an optimal solution of the lower level problem.
Using problem (2.1) instead of (1.4), we can replace (1.1) by

a>x+ s>(d−Ax) + γϕ(x)→ min
x,s,γ,y

s.t. x ∈ K,
D>s+ γc ≥ b,
Ax+Dy = d,
c>y = ϕ(x),
y ≥ 0,

(2.3)

provided this problem has an optimal solution [19]. This is a nonconvex optimization problem where,
moreover, the objective function as well as some constraints are only implicitly determined, for computing
the value ϕ(x) we have to solve a linear optimization problem.

Let (x̂, ŝ, γ̂, ŷ) be a local optimal solution of (2.3). Then,

(1) Ax̂+Dŷ = d, ŷ ≥ 0 and c>ŷ = ϕ(x̂), i.e. ŷ is an optimal solution of the lower level problem (1.3) for
x = x̂. ŷ is feasible for problem (1.4).

(2) (ŝ, γ̂) solves the linear optimization problem (2.1) (for fixed x = x̂). Hence, there is an optimal
solution to the primal problem (1.4), that is, ŷ solves

max
y
{b>y : Dy = d−Ax, y ≥ 0, c>y = ϕ(x)}

and the optimal objective function values are equal.

The objective function in problem (2.3) is in general neither convex nor concave, the feasible set of this
problem is given using the implicitly determined function ϕ(·). The function ϕ(·) is piecewise affine linear.
Hence, by definition, there are finitely many polyhedral sets Xi ⊂ Rn, i = 1, . . . , q, satisfying

q⋃
i=1

Xi = {x ∈ Rn : |ϕ(x)| <∞}

and the function ϕ is affine linear on Xi: ϕ(x) = ϕi(x) for all x ∈ Xi. This makes it possible to replace
problem (2.3) by

a>x+ s>(d−Ax) + γϕi(x)→ min
x,s,γ,y,i

s.t. x ∈ K ∩ Xi,

D>s+ γc ≥ b, (2.4)

Ax+Dy = d,

c>y = ϕi(x),

y ≥ 0,

i ∈ {1, 2, . . . , q}.

Now, since the decision variables include the index i ∈ {1, 2, . . . , q}, problem (2.4) is a combinatorial
problem. Without loss of generality, let Ψ(x) 6= ∅ for all x ∈ K, i.e. let the lower level problem have an
optimal solution for each x ∈ K. Then, by linear optimization theory, there is an optimal basic solution:

y = (yB , yN ) : yB = B−1(d−Ax) ≥ 0, yN = 0 for some basic matrix B.

3



Pessimistic Bilevel Linear Optimization

Assume without loss of generality that the rank r(D) of the matrix D is equal to l. Then, B is a square
matrix with l rows and r(B) = l. B is a submatrix composed by columns of D. The matrix B is a basic
matrix, the number of basic matrices corresponding to feasible basic solutions is not less than q. A basic
matrix corresponds to an optimal solution of the lower level problem if B−1(d−Ax) ≥ 0, the basic matrix is
then (primally) feasible. Assume without loss of generality that there are exactly q different basic matrices

B1, B2, . . . , Bq.

Remark 2.2. A square matrix B with l rows and r(B) = l but B−1(d − Ax) ≥ 0 for no x ∈ Rn does not
need to be considered in what follows. For each set Xi as defined above there exists one basic matrix. But
this basic matrix does not need to be unique. In that case, take one of them.

Let yBi be the subvector of y with components corresponding to the rows of D belonging to the basic
matrix Bi, yNi is the subvector of the other variables: y = (yBi , yNi). The vector c = (cBi , cNi) is
partitioned analogously. Then, yBi = (Bi)−1(d − Ax) ≥ 0, yNi = 0 and (yBi , yNi) is an optimal solution
of the lower level problem for all

x ∈ Xi := {x ∈ Rn : (Bi)−1(d−Ax) ≥ 0}

provided c>Bi(Bi)−1D − c> ≤ 0. The set Xi is then called region of stability.
Within Xi, ϕ(x) = c>y = cBi(Bi)−1(d− Ax) is an affine function of the upper level variable x. Thus,

problem (2.4) reads as

a>x+ s>(d−Ax) + γc>Bi(Bi)−1(d−Ax)→ min
x,s,γ,i

s.t. x ∈ K,

D>s+ γc ≥ b, (2.5)

(Bi)−1(d−Ax) ≥ 0.

Theorem 2.3. Let i ∈ {1, . . . , q} be fixed. The optimal solution of the problem (2.1) is constant for
x ∈ Xi ∩K.

Proof. A vertex (s, γ) of the set {(s, γ) : D>s+ γc ≥ b} is an optimal solution of the problem (2.1) if there
exists z such that

Dz = d−Ax, c>z = ϕ(x), z ≥ 0, (s>D + γc> − b>)z = 0

by linear optimization, cf. Theorem 2.1. These conditions are satisfied for an optimal solution y(x) of
problem (1.4), hence, z = y(x) is valid. The complementarity condition is satisfied as long as the set of
basic variables does not change and is independent of x, i.e. the optimal solution of the problem (2.1)
remains constant for x ∈ Xi.

Hence, problem (2.5) reduces to the problem (2.6) used in the algorithm below.
Now, if we compute all dual feasible basic matrices Bi from D, i = 1, . . . , q, that is, all basic matrices

Bi satisfying c>Bi(Bi)−1D − c> ≤ 0, then we can solve the pessimistic linear bilevel optimization problem
globally.

Algorithm 2.1. For all basic matrices Bi, i = 1, . . . , q of the matrix D:
If c>Bi(Bi)−1D − c> ≤ 0, then

1. select xi ∈ Xi = {x ∈ Rn : (Bi)−1(d−Ax) ≥ 0} with xi ∈ K,

2. compute yi = (yiBi , yiNi) with yiBi = (Bi)−1(d−Axi), yiNi = 0, ϕ(xi) = c>Bi(Bi)−1(d−Axi),

3. compute an optimal solution (si, γi) of problem (2.1) with x = xi,

4. if (yi)>(D>si + γic− b) = 0 then let xi be an optimal solution of the problem

a>x+ (si)>(d−Ax) + (γi)c>Bi(Bi)−1(d−Ax) → min

x ∈ K ∩Xi (2.6)

end if

4



Journal of Nepal Mathematical Society (JNMS), Vol. 1, Issue 1 (2018); S. Dempe, G. Luo, S. Franke

end if
Let x∗ be the best of the computed solutions xi:

a>x∗ + ϕp(x
∗) = min{a>xi + ϕp(x

i) : i ∈ {1, . . . , q}}.

Remark 2.4. 1. If Bi is a basic matrix with c>Bi(Bi)−1D− c> ≤ 0 only two possibilities exist in Step 1:
Either, the system of linear inequalities (Bi)−1(d−Ax) ≥ 0 has no solution or there is a solution xi

of this system. In the first case, we take the next basic matrix. In the second one, we can take an
arbitrary point xi ∈ Xi. Then, yi = (yiBi , yiNi) with yiBi = (Bi)−1(d − Axi), yiNi = 0 is an optimal
solution of the lower level problem (1.3).

2. If yi is not an optimal solution of the problem

max{b>y : y ∈ Ψ(xi)}, (2.7)

its dual problem has no optimal solution satisfying the complementarity slackness conditions. This is
checked in Steps 3 and 4. If yi is not an optimal solution of the problem (1.4), the next basic matrix
is taken.

3. If yi is an optimal solution of the problem (2.7), an optimal solution (si, γi) remains optimal for
problem (2.1) as long as y = y(x) = ((Bi)−1(d− Ax), 0) is feasible for the lower level problem. This
is guaranteed if x ∈ Xi, see Theorem 2.3.

4. Taking the preceding remarks into account, problem (2.3) reduces to (2.6).

Candler et al. [4] and others proposed algorithms for smart enumeration of all different basic matrices
Bi.

Theorem 2.5. x∗, as computed by Algorithm 2.1, is a global optimal solution of the pessimistic linear
bilevel optimization problem (1.5).

Proof. Assuming that the assertion is not correct, let x̃ ∈ K be an optimal solution of the pessimistic linear
bilevel optimization problem (1.5). Then, there is an optimal basic solution ỹ of the problem (2.7) with

Ψ(x̃) = {y : Dy = d−Ax̃, y ≥ 0, c>y = ϕ(x̃)}.

By linear optimization, {y : Dy = d−Ax̃, y ≥ 0, c>y = ϕ(x̃)} is a face of the set {y : Dy = d−Ax̃, y ≥ 0},
ỹ is a vertex of the second set or a basic optimal solution of the lower level problem

min
y
{c>y : Dy = d−Ax̃, y ≥ 0}.

Hence there exists a basic matrix B such that ỹ = (ỹB , ỹN ) with ỹB = B−1(d − Ax̃), ỹN = 0. By
construction, B ∈ {Bi : i = 1, . . . , q} considered in the algorithm. The matrix B can be taken such that
c>B(B)−1D − c> ≤ 0.

Since ỹ is an optimal solution of the linear optimization problem and using linear optimization duality,
there exists an optimal solution (s̃, γ̃) of the dual problem (2.1) with x = x̃ and we have

ỹ>(D>s̃+ γ̃c− b) = 0.

Hence, x̃ is an optimal solution of one of the problems (2.6) which leads to the desired contradiction. The
theorem is correct.

3 A Descent Algorithm

Algorithm 2.1 is an algorithm computing a global optimum of the pessimistic bilevel optimization problem
(1.1). Such algorithms can have large numerical (non-polynomial) effort. Hence, we will suggest an algo-
rithm computing a local optimal solution in what follows. This will be a descent algorithm investigating
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one after the other certain regions of stability. Since subsequent regions of stability have nonempty inter-
sections it seems to be obvious that the basic matrices describing them are neighboring matrices. This is
the content of the next two theorems.

Problem (2.6) is a linear optimization problem. Optimal solutions of such problems can be found at
vertices of the feasible set

K ∩Xi = {x ∈ K : (Bi)−1(d−Ax) ≥ 0}

with yBi = (Bi)−1(d−Ax), yNi = 0.

Theorem 3.1. Let x ∈ K ∩ Xi be an optimal solution of problem (2.6). If (Bi)−1(d − Ax)j > 0 for
j = 1, . . . , l, then (x, y) with yBi = (Bi)−1(d − Ax) and yNi = 0 is a local optimal solution of problem
(1.1).

Proof. By construction, the point (x, y) is feasible for (1.1). If it is not locally optimal for this problem,
there exists a sequence {xk, yk}∞k=1 converging to (x, y) with

a>xk + max
yk∈Ψ(xk)

b>yk < a>x+ max
y∈Ψ(x)

b>y (3.1)

and xk ∈ K, yk ∈ Ψ(xk), b>yk ≥ b>y ∀ y ∈ Ψ(xk) for all k. Since (Bi)−1(d − Ax)j > 0 for j = 1, . . . , l
we have (Bi)−1(d−Axk)j > 0 for j = 1, . . . , l and sufficiently large k. Hence, xk ∈ K ∩Xi and (xk, yk) is
feasible for the problem (1.1) for sufficiently large k. This contradicts (3.1).

Result of the transformations in the previous section is to transform the pessimistic bilevel optimization
problem into

a>x+ (si)>(d−Ax) + (γi)c>Bi(Bi)−1(d−Ax) → min
x,i

x ∈ K ∩Xi. (3.2)

Local and global optimal solutions of this problem can be found at vertices of the sets K∩Xi. If x ∈ K∩Xi

is a (local or global) optimal solution, the basic matrix Bi used for describing Xi can be used to compute
the point y = (yBi , yNi) with yBi = (Bi)−1(d−Ax), yNi = 0 such that (x, y) is a (local or global) optimal
solution of the pessimistic bilevel optimization problem (1.1).

If the point (x, y) with x ∈ K being an optimal solution of the problem (2.6) is not a local optimal
solution of problem (1.1), then there exists a sequence {(xk, yk)}∞k=1 converging to (x, y), xk ∈ K with
(3.1). Without loss of generality we can assume that yk ∈ Ψ(xk) is a basic solution of the lower level
problem (1.2). Since there exists only a finite number of basic matrices Bi we have

ykBk = (Bk)−1(d−Axk) ≥ 0, ykNk = 0,

where the basic matrix for yk is denoted by Bk. Hence, there is an infinite subsequence of {yk}∞k=1 (denoted
again by {yk}∞k=1) for which the basis matrix is constant. Let Bj be this basic matrix. Then, xk ∈ K ∩Xj

for all k and, since the regions of stability are closed, x ∈ K ∩Xj .

Theorem 3.2. Let x ∈ K ∩ Xi be an optimal solution of the problem (2.6), y ∈ Ψ(x) with basic matrix
Bi. If (x, y) is not locally optimal for (1.1), then there exists a region of stability Xj corresponding to a
basic matrix Bj such that: Bj is obtained from Bi by replacing columns Dp in Bi with columns Dq of the
matrix D not being columns in Bi.

1. the rank r(Bj) = l,

2. (yBi)p = ((Bi)−1(d−Ax))p = 0,

3. Let ∆ := c>Bi(Bi)−1D − c> ≤ 0 be the reduced costs for basic matrix Bi. Then,

∆q

Dpq
≥ ∆j

Dpj
∀ j : Dpj > 0
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4. problem (2.1) has an optimal solution (s, γ) and we have

y>(D>s+ γc− b) = 0, (Bj)>s+ γcBj − bBj = 0.

Here, bBj , cBj are the subvectors of b, c corresponding to basic variables for the basic matrix Bj.

Proof. If (x, y) is not a local optimal solution of problem (1.1), then there exists a sequence {(xk, yk)}∞k=1

converging to (x, y) with

a>xk + max
y∈Ψ(xk)

b>y < a>x+ max
y∈Ψ(x)

b>y, c>yk = max
y∈Ψ(xk)

b>y, yk ∈ Ψ(xk)∀k.

Since the number of different basic matrices is finite, this implies that there exists without loss of generality
a basic matrix Bj such that

r(Bj) = l, lim
k→∞

ykBj = lim
k→∞

(Bj)−1(d−Axk) = yBj

and yp is not a basic variable in yBj . This implies the first two assertions.

Since yk ∈ Ψ(xk) for all k we have xk ∈ Xj for all k and, since Xj is closed, x ∈ Xj . This implies that

c>Bj (Bj)−1D − c> ≤ 0

and Bj is a result of replacing columns of Bi with columns of D which do not belong to Bi. Executing
such replacement, dual feasibility is secured which, by the rules of the simplex algorithm, implies that the
third assertion holds.

Since yk is an optimal solution of problem max{b>y : y ∈ Ψ(xk)}, problem (2.1) has an optimal solution
(ŝ, γ̂) which is independent of k and we have

(yk)>(D>ŝ+ γ̂c− b) = 0 ∀ k.

This implies the last assertion by linear optimization duality and lim
k→∞

yk = y.

Using this theorem, an algorithm can be suggested computing a sequence of basic matrices Bk, corre-
sponding regions of stability Xk and solutions xk of the problems (2.6) such that

a>xk+1 + ϕp(x
k+1) < a>xk + ϕp(x

k), k = 1, 2, . . . , t− 1

and xt is a local optimal solution of the problem (1.5).

Algorithm 3.1. Select x0 ∈ K, compute y0 as an optimal basic solution of problem (1.4) and the corre-
sponding basic matrix B0, k:= 0.

1. Set Xk := {x : (Bk)−1(d − Ax) ≥ 0} and compute (sk, γk) as optimal solution of the problem (2.1)
with x = xk.

2. Compute an optimal solution xk+1 of the problem (2.6) with Bi = Bk.

3. Use Theorem 3.2 to find a a new basic matrix Bk+1, set k := k + 1, go to Step 1.

There is some vagueness in Step 3 of this algorithm. Namely, Theorem 3.2 does not imply that the
new basic matrix is uniquely determined. Aim of this step is to determine a region of stability Xk+1 with
xk+1 ∈ Xk ∩Xk+1 such that we can find xk+2 ∈ Xk+1 with

a>xk+2 + ϕp(x
k+2) < a>xk+1 + ϕp(x

k+1) (3.3)

in the next iteration. If there are more such regions of stability Xi, it is possibly necessary to investigate
all these regions until (3.3) is satisfied. If this search is not successful, the algorithm stops with a local
optimal solution.

Theorem 3.3. Let x∗ be the last solution computed with Algorithm 3.1. The point x∗ is a local optimal
solution of (1.5).

The proof of this theorem is straightforward.
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4 An Example

In the previous sections, we have shown that the pessimistic bilevel linear optimization can be converted
to a single-level optimization problem. Aim of this section is to illustrate the behavior of the algorithm for
computing a local optimal solution.
Example 4.1 The data of the bilevel optimization problem are as follows:

4y1 − 40y2 − 4y3 − 8x1 − 4x2 → min
x

s.t. x ≥ 0,

where y = (y1, y2, · · · , y6)> solves

−y1 − y2 − y3 → min
y

(4.1)

s.t. y1 +y2 +y3 +y4 = 1
−y1 +2y2 −0.5y3 +y5 +2x1 = 1
2y1 −y2 −0.5y3 +y6 +2x2 = 1
y ≥ 0

Let x0 = (0.5, 0.5)>. Then, y0 = (0.2, 0, 0.8, 0, 1, 0)> and (0, 0, 1, 0, 0.5, 0.5)> are optimal basic solutions for
the lower level problem. The optimal pessimistic solution (i.e. the optimal solution of problem (1.4)) is y0.
The optimal basic matrix and its inverse are:

B1 =

 1 1 0
−1 −0.5 1
2 −0.5 0

 (B1)−1 =

 1
5 0 2

5
4
5 0 − 2

5
3
5 1 1

5

 .

Furthermore,

X1 =

x ≥ 0 :

 1
5 0 2

5
4
5 0 − 2

5
3
5 1 1

5

 1
1
1

−
 0 0

2 0
0 2

( x1

x2

) ≥ 0


= {x : −0.5 ≤ x2 ≤ 0.75, x1 ≤ −0.2x2 + 0.9}

is the resulting region of stability. The basic variables are y1, y3, y5. Problem (2.1) reduces to

s1 −γ → min
s1 −s2 +2s3 −γ ≥ 4
s1 +2s2 −s3 −γ ≥ −40
s1 −0.5s2 −0.5s3 −γ ≥ −4
si ≥ 0, i = 1, 2, 3

with optimal solution (s1, γ1) = ((0, 0, 2), 0).
Then, problem (2.6):

−8x1 − 4x2 + 2(1− 2x2)→ min

subject to
0 ≤ x2 ≤ 0.75, 0 ≤ x1 ≤ −0.2x2 + 0.9

gives the point x1 = (0.75, 0.75)> as next iterate. One, not unique lower level optimal solution is y(x1) =
(0, 0, 1, 0, 0, 0)> which is the solution of problem (1.4) at x = x1. Here, a new basic matrix and a new
region of stability are selected and the computation proceeds similarly.

One neighboring basic matrix is:

B1 =

 1 1 0
2 −0.5 1
−1 −0.5 0

 (B1)−1 =

 −1 0 −2
2 0 2
3 1 5


with the region of stability

X2 = {x ∈ R2 : 0.75 ≤ x2 ≤ 1, 4.5− 5x2 ≥ x1}.
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x

x

1

2

X
1

X 2

1

1

Figure 1: Regions of stability in Example 4.1 as subsets of R2
+

The regions of stability are depicted in Fig. 1.
At x = x1 an optimal solution of problem (1.4) is (s, γ) = ((0, 0, 3.2), 2.4). Using the region of stability

X2 at x = x1, we obtain again x1 as optimal solution.
2

5 Conclusion

Regarding pessimistic bilevel linear optimization problems (PBLOP), it is harder to capture its essence
than in the optimistic case while it is very important in reality. By means of duality theory and using
the lower level optimal value function, we converted the PBLOP to a single-level optimization problem
with nonconvexity. Then we proposed algorithms for computing a global and a local optimal solution
respectively. Applications and solution methods of nonlinear pessimistic bilevel optimization problem will
be studied in the future.
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