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Abstract: Let g be a complex simple Lie algebra, and let aut(g) be the group of all automorphisms on g. The
finite order members of aut(g) have been classified by Kac, up to conjugation by g-automorphisms. In other
words, this classification does not distinguish two finite order g-automorphisms σ, τ if there exists u ∈ aut(g)
such that σ = u−1τu. For g = sl(n,C) and σ, τ inner, we provide a finer classification up to conjugation
by inner g-automorphisms, namely we do not distinguish σ, τ only if u is an inner automorphism.
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1 Introduction

Let g be a complex simple Lie algebra, and let aut(g) denote the g-automorphisms. The finite order g-
automorphisms play important roles in algebra, such as the construction of Kac-Moody algebras. For this
reason, they are well-studied and classified by Kac [4], which prompts generalization in the super setting
by Chuah [1]. Kac’s classification is up to conjugation by g-automorphism, namely it does not distinguish
σ, τ ∈ aut(g) if there exists u ∈ aut(g) such that σ = u−1τu. Here aut(g) is a Lie group, and we let int(g)
denote the inner g-automorphisms, namely the g-automorphisms in the identity component of aut(g). One
may consider the classification under a stricter notion of conjugation, by requiring u ∈ int(g) in above.
Obviously this concerns only g of types A, D and E6, since they are the only cases where int(g) 6= aut(g)
(this is equivalent to the existence of nontrivial symmetry on the Dynkin diagram of g). In this article, we
classify the finite order inner automorphisms on sl(n,C) = An−1 up to conjugation by inner automorphisms.

Figure 1: Extended Dynkin diagram of sl(n,C).

Let g = sl(n,C). Its extended Dynkin diagram is as given in Figure 1. Let D denote the diagram in Figure
1, with vertices labeled 1, ..., n as indicated. A Kac diagram c is an assignment of nonnegative integers cj
to the vertices j of D, such that c1, ..., cn have no nontrivial common factor. Let K denote all the Kac
diagrams.

Let c be a Kac diagram. Let m =
∑n

1 cj , and let ω = exp(2πi)/m ∈ C. The vertices α ∈ D represent the
union of a simple system and its lowest roots.

Theorem 1.1. (Kac) [2, Ch.X-5,Thm.5.15][4, Ch.8] A Kac diagram c represents a g-automorphism σ of
order m, where σ acts as multiplication by ωcα on the root space represented by α ∈ D. Up to conjugation
by aut(g), all finite order inner g-automorphisms are obtained in this way.

The general Kac’s theorem deals with all finite order automorphisms on complex simple Lie algebras. Here
we focus only on finite order inner automorphisms on sl(n,C).

In the above theorem, “up to conjugation” means that it does not distinguish σ, τ if they are related by
σ = u−1τu for some u ∈ aut(g). It also does not distinguish two Kac diagrams c, d ∈ K if they are related
by a symmetry on D. In this article, we study a stricter condition, namely we do not distinguish τ and
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u−1τu only if u is an inner automorphism. We shall see in the theorem below that a stricter condition is
imposed on K, namely we do not distinguish c, d ∈ K only if they are related by the cyclic group Zn in the
symmetry group of D.

The symmetry group of D is the dihedral group Dn = Zn o Z2, where the normal subgroup Zn acts as
rotations and Z2 contains a nontrivial reflection. It induces a Dn-action on K by

(gc)j = cg(j) ; g ∈ Dn, c ∈ K.

Theorem 1.2. Two inner finite order g-automorphisms are conjugate by inner g-automorphisms if and
only if their Kac diagrams are in the same Zn-orbit.

Theorem 1.2 is the main result of this article. In Section 2, we prove Theorem 1.2. In Section 3, we provide
some examples to illustrate the ideas.

2 Kac Diagrams of sl(n,C)
Recall that D is the extended Dynkin diagram of sl(n,C) with vertices labeled as 1, ..., n as in Figure 1.
Let K be the Kac diagrams on D. In Kac’s Theorem 1.1, he does not distinguish two Kac diagrams which
are related by a symmetry on D. However we consider two such diagrams as distinct members of K. So for
example Figure 3(b) and Figure 3(c) are distinct members of K. The dihedral group Dn = Zn o Z2 acts
on D, and hence on K. Given c ∈ K, we let Zn(c) ⊂ K denote its Zn-orbit.

The group of g-automorphisms has a semi-direct product

aut(g) = int(g) o aut(D0), (1)

where int(g) consists of the inner automorphisms and is a normal subgroup, and aut(D0) is the automor-
phism group of the Dynkin diagram D0 of g. We let D0 denote the Dynkin diagram, because the notation
D has been used for the extended Dynkin diagram. See for instance [5, Thm.7.8]. Fix a Cartan subalgebra
h of g, and let ∆ ⊂ h∗ be its root system. We have the root space decomposition g = h +

∑
∆ gα. Each

member σ of aut(g) which stabilizes h induces an automorphism θ on ∆, given by σgα = gθα. So by
considering g-automorphisms which stabilize h, (1) leads to

aut(∆) = W o aut(D0),

where W is the Weyl group of ∆.

Given α ∈ ∆, it defines a reflection Rα : ∆ −→ ∆, where Rα maps α to −α, and Rα(β) = β if β is
perpendicular to α. Then W is generated by the reflections {Rα ;α ∈ ∆} [3, III-9].

Let c ∈ K, and let m =
∑
D cj . As discussed in Theorem 1.1, it represents some g-automorphisms σ of

order m. This means that there exists Π ⊂ ∆, which is a simple system together with its lowest root, such
that the vertices of D represent Π, and σ has eigenvalue ωcj on the root space of cj . Here ω = exp(2πi)/m.

Suppose c, d ∈ K both represent σ, but with respect to Π,Π′. Then we have Π′ = gΠ for some g ∈ aut(∆),
because aut(∆) acts transitively on the family of simple systems. If g is induced by an inner automorphism,
then g ∈W . And since the reflections generate W , g is the composite of a sequence of reflections R1, ..., Rn.
In this case we write c ∼ d. We shall investigate the necessary and sufficient conditions for c ∼ d.

Proposition 2.1. If Zn(c) = Zn(d), then c ∼ d.

Proof: Let α1, ..., αn be the roots which are represented by the vertices of D. Let Rj be the root reflection
which maps αj to −αj and fixes the roots perpendicular to αj . We claim that

(a) R2 · ... ·Rn(αj) = αj+1 for j = 1, ..., n− 1;
(b) R2 · ... ·Rn(αn) = α1.

(2)

40



Journal of Nepal Mathematical Society (JNMS), Vol. 2, Issue 2 (2019); Ching-I Hsin

For j = 2, ..., n− 1,
R2 · ... ·Rn(αj) = R2 · ... ·Rj+1(αj)

= R2 · ... ·Rj(αj + αj+1)
= R2 · ... ·Rj−1((−αj) + (αj+1 + αj))
= R2 · ... ·Rj−1(αj+1) = αj+1.

(3)

Also,
R2 · ... ·Rn(α1) = R2 · ... ·Rn−1(α1 + αn)

= R2 · ... ·Rn−2(α1 + αn−1 + αn)
= R2 · ... ·Rn−3(α1 + (αn−2 + αn−1) + αn)
= ... = R2(α1 + α3 + ...αn)
= (α2 + α1) + (α2 + α3) + α4 + ...+ αn.

(4)

Since
∑n

1 αj = 0, the last line of (4) becomes α2. Thus (3) and (4) lead to (2)(a). We can also prove (2)(b)
directly, or simply note that (2)(a) implies (2)(b). This proves (2) as claimed.

Let θ ∈ Zn be the 1-step counter-clockwise rotation on D. Namely it rotates the vertices by

θ : 1→ 2→ ...→ n→ 1. (5)

By (2), θ = R2 · ... ·Rn. Hence θc ∼ c. Since θ generates Zn, the proposition follows. 2

We shall illustrate the arguments of Proposition 2.1 by an example later (see Figure 2). Fix a positive
integer m > 1. Let

ω = exp(2πi/m).

We shall work on g-automorphisms of order m, and they are represented by Kac diagrams c such that∑n
1 cj = m. The diagram c represents the automorphism which acts as multiplication by ωcj on the root

space of vertex j. Define

φ : K −→ C ; φ(c) =

n∑
j=1

ωcn+...+cj .

Thus φ(c) = ωcn+...+c1 + ...+ ωcn = 1 + ωcn+...+c2 + ...+ ωcn . Let

S(c) = {ωc1+...+cjφ(c) ; j = 1, ..., n} ⊂ C.

The next proposition shows that S(c) is an invariance of rotations and equivalence relation on K.

Proposition 2.2.
(a) S(c) = φ(Zn(c)).
(b) If d ∈ Zn(c), then S(c) = S(d).
(c) If c ∼ d, then S(c) = S(d).

Proof: Let θ ∈ Zn be the rotation (5), and let d = θc. Then d1 = cn and dr = cr−1 for all r > 1. Therefore,

φ(θc) = 1 + ωcn−1+...+c1 + ωcn−1+...+c2 + ...+ ωcn−1

= ω−cn(ωcn + 1 + ωcn+...+c2 + ...+ ωcn+cn−1)
= ω−cnφ(c).

(6)

Then φ(θ2c) = ω−(θc)nφ(θc) = ω−cn−1−cnφ(c). Continue this process and get

φ(θjc) = ω−cn−j+1−...−cnφ(c) = ωc1+...+cn−jφ(c).

Hence S(c) = {ωc1+...+cj}j · φ(c) = {φ(θjc)}n−j = φ(Zn(c)), and part (a) follows.

By (6),
S(d) = {ωd1+...+dr}nr=1 · φ(d) = ({ωcn} ∪ {ωcn+c1+...+cr}n−1

r=1 ) · ω−cnφ(c) = S(c).

Since θ generates Zn, this proves part (b) of the proposition.
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Next we prove part (c). If c is a Kac diagram with respect to Π ⊂ ∆ (where Π is a simple system and its
lowest root), we let Fjc be the resulting Kac diagram with respect to RjΠ. We claim that

S(Fjc) = S(c) ; j = 1, ..., n. (7)

Let j = 2, ..., n− 1 and let d = Fjc. Then

dr = cr for all r = 1, ..., j − 2, j + 2, ..., n;
dj±1 = cj±1 + cj , dj = −cj .

(8)

By (8), dj−1 + dj + dj+1 = cj−1 + cj + cj+1. Hence

dr + ...+ dn = cr + ...+ cn for all r ≤ j − 1 or r > j + 1. (9)

Also,
ωdj+dj±1 + ωdj±1 = ω−cj+(cj±1+cj) + ωcj±1+cj = ωcj±1 + ωcj±1+cj . (10)

By (9) and (10), we have {ωd1+...dr}nr=1 = {ωc1+...cr}nr=1 as well as

φ(d) =

n∑
1

ωdr+...+dn =

n∑
1

ωcr+...+cn = φ(c).

This implies that
S(d) = {ωd1+...+dr}nr=1 · φ(d) = {ωc1+...+cr}nr=1 · φ(c) = S(c).

This proves (7) for j = 2, ..., n− 1.

One can also check directly (7) for j = 1 and j = n. Alternatively, for j = 1, n, there exists a rotation g and
k ∈ {2, ..., n− 1} such that Fjc = g−1Fkgc. Then by part (b) of this proposition, S(Fjc) = S(g−1Fkgc) =
S(c). This completes the proof of (7), which leads to part (c) of this proposition. 2

An element of Dn\Zn of order 2 is called a reflection. We say that a Kac diagram c is symmetric if there
exists a reflection r such that rc = c. Equivalently for any z ∈ Dn\Zn, there exists g ∈ Zn such that
zc = gc. Let S(c) denote the complex conjugation on the elements of S(c) ⊂ C.

Proposition 2.3. If S(c) = S(c), then c is symmetric.

Proof: Use the polar coordinates to write reit ∈ C×, where r > 0 and t ∈ [0, 2π). Define a partial order
on C× by reit � r′eit′ if t ≥ t′.

Suppose that S(c) = S(c). By Proposition 2.2(b), if c′ ∈ Zn(c), then S(c′) = S(c). Furthermore c is
symmetric if and only if c′ is symmetric. Therefore, replacing c by another member in Zn(c) if necessary,
we may assume that φ(c) � φ(c′) for all c′ ∈ Zn(c). The elements of S(c) are

φ(c) � ωc1φ(c) � ωc1+c2φ(c) � ... � ωc1+...+cn−1φ(c). (11)

Case 1: φ(c) ∈ R.

Since ωc1+...+cn = 1, by (11), the elements of S(c) are

φ(c) � ωcnφ(c) � ωcn+cn−1φ(c) � ... � ωcn+...+c2φ(c). (12)

Since S(c) = S(c), by (11) and (12), we have c1 = cn, c2 = cn−1 and more generally cj = cn−j+1. Then c
is symmetric by the reflection r(j) = n− j + 1. Case 2: φ(c) 6∈ R.

Since ωc1+...+cn = 1, by (11), the elements of S(c) are

ωcnφ(c) � ωcn+cn−1φ(c) � ωcn+...+c2φ(c) � φ(c). (13)

Since S(c) = S(c), by (11) and (13), we have φ(c) = ωcnφ(c), ωc1φ(c) = ωcn+cn−1φ(c) and more generally
ωc1+...+cjφ(c) = ωcn+...+cn−jφ(c). It implies that c1 = cn−1, c2 = cn−2 and so on. Then c is symmetric by
the reflection r(j) = n− j. 2
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Proposition 2.4. For any z ∈ Dn\Zn, we have S(zc) = S(c).

Proof: A specific reflection r is given by 1↔ n, 2↔ n− 1, and more generally

r(j) = n− j + 1. (14)

For such r and any c ∈ K,

φ(rc) = ωc1+...+cn + ωc1+...+cn−1 + ...+ ωc1

= 1 + ω−cn + ω−cn−cn−1 + ...+ ω−cn−...−c2

= 1 + ωcn + ωcn+cn−1 + ...+ ωcn+...+c2

= φ(c).

(15)

Recall that S(c) = {ωc1+...+cjφ(c)}nj=1. We have

S(c) = {ωcj+1+...+cnφ(c)}nj=1 as ωc1+...+cn = 1

= {ω(rc)1+...+(rc)jφ(rc)}nj=1 by (14) and (15)
= S(rc).

(16)

An arbitrary element of Dn\Zn is of the form rg, where g ∈ Zn. By Proposition 2.2(b) and (16), S(rgc) =
S(gc) = S(c). 2

Proof of Theorem 1.2:

Let c, d ∈ K be related by the diagram symmetry Dn. By Proposition 2.1, if there exists a rotation g ∈ Zn
such that gc = d, then c ∼ d.

Conversely, suppose that rc = d for some r ∈ Dn\Zn, but c and d are not related by the rotation group
Zn. Then c is not symmetric, so by Proposition 2.3, S(c) 6= S(c). By Proposition 2.4, S(c) 6= S(d). By
Proposition 2.2, c 6∼ d. This proves Theorem 1.2. 2

3 Examples

We provide an example to illustrate the concepts discussed earlier. Let g = sl(3,C). Its extended Dynkin
diagram D is given by Figure 2(a), namely a triangle. We denote its vertices by x, y, z, and they represent
a simple system with lowest root as indicated in Figure 2(a).

Consider the Kac diagram c in Figure 2(b), where cx = 1, cy = 2 and cz = 0. It represents a g-automorphism
σ of order cx + cy + cz = 3. Let ω = exp(2πi/3). Then all the root spaces are eigenspaces of σ, with eigen-
values 1, ω or ω2. We indicate these eigenvalues with the roots in Figure 2(b).

Consider the reflection Rx, which maps x to −x and fixes the hyperplane x⊥. The hyperplane is just the
dotted line in Figure 2(b), so Rx is the reflection about the dotted line. Figure 2(c) show the resulting
eigenvalues after performing Rx. The corresponding Kac diagram is given in Figure 2(c). By comparing
the Kac diagrams of Figure 2(b) and Figure 2(c), we see that they are related by a rotation on the triangle.
This observation verifies Proposition 2.1, namely the Kac diagrams in Figure 2(b) and Figure 2(c) are
related by rotation (i.e. they are in the same Z3-orbit), and indeed they are equivalent because they are
related by performing Rx to the root system.

Next we classify all inner automorphisms on g = sl(3,C) of order 3, up to conjugation by inner automor-
phisms. All Kac diagrams are assignments of nonnegative integers {c1, c2, c3} without nontrivial common
factor such that c1 + c2 + c3 = 3. So the only possibilities are {1, 1, 1} and {0, 1, 2}.

Figure 3 provides all possibilities, where two diagrams are not distinguished if they are related by a ro-
tation Z3. So there are three such g-automorphisms. Note that Figure 3(b) and Figure 3(c) are related
by a diagram reflection but not rotation, so they represent order-3 automorphisms σ, τ ∈ aut(g) such that
σ = u−1τu for some u ∈ aut(g), but u 6∈ int(g). So σ, τ are not distinguished by Kac’s Theorem 1.1, but
are distinguished by our stricter Theorem 1.2. Diagram rotations are not needed, as discussed in Figure 2
above. So Figure 3 exhausts all possibilities up to conjugation by inner automorphisms.
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Figure 2: Reflection and Kac diagrams.

Figure 3: Automorphisms of order 3 on sl(3,C).
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