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Abstract: In this paper, we present simple and exact eigenvalues for both the solid- and fluid-phases of
the real two-phase general model developed by Pudasaini (2012); we call these phase-eigenvalues, the solid-
phase-eigenvalues and the fluid-phase-eigenvalues. Results are compared by applying the derived phase-
eigenvalues that incorporate the phase-interactions in the two-phase debris movements against the simple
and classical solid and fluid eigenvalues without any phase interaction. We have constructed several different
set of eigenvalues including the coupled phase eigenvalues by using rational factorization method. At first, we
consider for general debris height; factorizing the solid and fluid lateral pressure contributions by considering
the negligible pressure gradient; negligible solid lateral pressure; negligible fluid lateral pressure; negligible
solid and fluid lateral pressure. Secondly, for a thin debris flow height, we also construct the fourth set
of eigenvalues in three different cases. These phase-eigenvalues incorporate strong interaction between the
solid and fluid dynamics. The simulation results are produced by taking all these different sets of coupled
phase-eigenvalues and are compared with the classical uncoupled set of solid and fluid eigenvalues. The
results indicate the importance of phase-eigenvalues and supports for a complete description of the phase-
eigenvalues for the enhanced description of real two-phase debris flows and landslide motions.

Keywords: Debris flows, Exact eigenvalues, Phase-eigenvalues, Rational factorization, Phase-interaction,
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1 Introduction

A debris flow is a moving mass that generally consists of loose sand, soil, rock, and water and travels down
a slope mainly under the influence of gravity [12, 13, 14, 16, 17, 28, 30, 36, 40, 43, 44]. Debris flows which
generally occur in mountainous areas throughout the world are extremely destructive and dangerous natu-
ral events. A debris flow can also be caused by a sudden surge of water, caused by the breaking off of a dam,
rock fall or a landslide into a lake, ocean or river causing the water to overflow [5, 6, 10, 24, 25, 26, 37, 38, 46].
As the flood surge rushes down a dry channel, it can transform into a debris flow by eroding the bed and
picking up material on its way [11, 15, 22, 41]. During the event, the material undergoes rapid motions
and large deformations, which may cause the boundary to change abruptly or continuously. Some debris
flows are very fast - these are the ones that attract more attention. In areas of very steep slopes they can
reach speeds of over 160 km/hour [21].

Every year throughout the world, debris flows cause an immense amount of damage to people and their
properties [39]. The growth of population and development activities inevitably puts a lot of pressure
on developers to build houses and civil infrastructures in areas that are exposed to elevated risk of snow
avalanches, debris flows, mud flows, landslides and similar events which are often of a hydro-geological
nature [36]. Debris flow catch dams, flexible wire barriers and land planning measures (hazard maps)
are some ways for protecting a region from the destructive debris flow [36]. So, the mechanics of debris
flows has been a subject of intensive research, the primary goal being to understand the factors leading
to debris initiation and finding an appropriate physical and dynamical description of debris flow motion.
From a modelling point of view, debris flows are characterized as gravity-driven flows of a multi phase
material[12, 13, 14, 16, 17, 20, 28, 30, 35, 36, 40, 43, 44].

In the past, there were various rheological models presented to study the debris flows, e.g., single phase,
mixture flows, two layered flows and two-fluid flows. As the two-phase debris flows are advective-diffusive
processes, these events are modelled by some complex hyperbolic-parabolic partial differential equations.
Pudasaini (2012) proposed an advanced and comprehensive general two-phase debris flow model that in-
cludes several dominant physical aspects of the flow including buoyancy, solid-volume fraction-gradient-
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enhanced non-Newtonian viscous stress, virtual mass, and generalized drag. There are strong couplings
between the solid and the fluid momentum transfer. Due to its general and comprehensive nature, here,
the analysis is based on this general model. We consider the mass and momentum balance equations for
the solid- and the fluid-phases. The equations are then written in a matrix form with the vector of the
virtual mass induced generalized conservative variables, vector of transport fluxes and the source vector.
Recently, Pokhrel et al. (2018) have developed a generalized quasi two-phase mixture model for mass flow
which captures all dynamics of the generalized two phase-mass flow model [35]. Based on the generalized
mixture mass flow model, stream function, vorticity transport, and pressure Poisson equations have been
derived [33]. The new derived model equations also capture all physical phenomena of the mixture model
equation [32].

Landslides, debris flows and tsunamis are large gravitational mass movements and extremely destructive
natural hazards that often occur as the motion of the mixture of soil, rock and fluid down mountain slopes
[20]. So, reliable methods are needed to accurately predict the flow evolution, run-out distances, inunda-
tion areas, deposition behaviour, impact forces, and the overall flow dynamics from inception to standstill;
this is required for the prevention measures and enhanced mitigation strategies in geo-hazard-prone areas.
Depending on the material involved and the flow dynamics and the momentum transfer between the con-
stituents, these flows can be effectively single phase, or must be described by applying the real two-phase
mass flow models; for the correct and reliable description of flow behaviour, we need the exact description
of eigenvalues of the system. The correct and reliable description of flow behaviour requires the exact
description of eigenvalues of the system [35]. Here, we mainly focus on the derivation, discussion and
simulations of some simple analytical solid- and fluid-phase eigenvalues. Phase-eigenvalues are obtained
from the flux-matrix formed by taking the rate of change of vector of transport fluxes with respect to the
vector of conservative state variables.

Some eigenvalues were discussed on the eigen-structure of two-phase and multi-layer flows can be found
in, including, Audusse (2005), Pitman and Le (2005), Bouchut and Morales (2008), Fernandez-Nieto et al.
(2008), Pelanti et al.(2008), Castro et al. (2010), and Castro-Diaz et al. (2011). The eigenvalues of the
two-phase model were analyzed in Pudasaini (2012) by assuming solid-phase velocity is much greater than
the fluid-phase velocity. We have also obtained one set of the eigenvalue by using much less assumption
than in Pudasaini (2012). From our eigenvalues, we have also obtained the usual eigenvalues of single-phase
granular flow by neglecting the fluid flows debris height, which resembles with the solid-phase eigenvalues
as obtained in Pudasaini and Hutter (2007).

From eigenvalues, we can extract wave speeds and determine the Froude number (Fr). As the wave speeds
for both the solid and fluid phases carry very important information of the flow dynamics and thus play
crucial role in the simulation, their accurate knowledge plays vital role in correctly describing real two-
phase flows. Our simulation results show that all of our coupled phase-eigenvalues provide enhanced flow
dynamics as compared to the classical uncoupled solid- only and fluid- only eigenvalues.

2 Model Equations

The two-phase debris flows are characterized by its distinct properties of the materials involved (Pudasaini,
2012): the fluid phase is characterized by its density ρf , viscosity ηf , and isotropic stress distribution;
the solid phase is characterized by its density ρs, internal and basal friction angles φ and δ, respectively,
and anisotropic stress distribution, K (lateral earth pressure coefficient). These characterizations and the
presence of relative motion between the two phases lead to different mass and momentum balance equations
for the solid and the fluid phases, respectively. Let us, uf and αs, αf (= 1− αs) denote the slope parallel
velocities, and volume fractions for the solid and the fluid constituents, denoted by the suffices s and f ,
respectively. The general two-phase debris flow model when reduced to one-dimensional channel flows
consists of the depth-averaged mass and momentum balance equations for the solid and fluid phases, as

62



Journal of Nepal Mathematical Society (JNMS), Vol. 2, Issue 2 (2019); P. R. Pokhrel, B. M. Tuladhar

described by the following set of partial differential equations [35]:

∂

∂t
(αsh) +

∂

∂x
(αshus) = 0,

∂

∂t
(αfh) +

∂

∂x
(αfhuf ) = 0, (1)

∂
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∂
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The source term in the x-momentum equation for solid is
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[
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∂b
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[
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The source term in the x-momentum equation for fluid is
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[
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where J = 1 (linear drag) or 2 (quadratic drag) and the other parameters are

βs = εKpbs , βf = εpbs , pbf = −gz, pbs = (1− γ)pbf , CDG =
αsαf (1− γ)

[εUT {PF(Rep) + (1− P)G(Rep)}]
,

F =
γ

180

(
αf

αs

)3

Rep, G = α
M(Rep)−1
f , γ =

ρf
ρs
, Rep =

ρfdUT
ηf

, NR =

√
gLHρf
αfηf

,

NRA =

√
gLHρf
Aηf

, αf = 1− αs, A = A(1− αs).

Here, h is the flow depth, are associated with the effective solid and fluid pressure at the base, x and z are
coordinates along the flow directions, and gx and gz are the components of gravitational acceleration along
the x and z directions respectively, and βs and βf are the lateral hydraulic pressure parameters for solid
and fluid respectively. L and H are the typical length and depth of the flow, ε = H/L is the aspect ratio,
and µ = tan δ is the basal friction coefficient. CDG is the generalized drag coefficient, UT is the terminal
velocity of a particle and P ∈ [0, 1] is a parameter which combines the solid-like (G) and fluid-like (F)
drag contributions to flow resistance, γ is the density ratio, C is the virtual mass coefficient (solid particles
induced kinetic energy of fluid phase), ηf is the fluid viscosity and M is a function of the particle Reynolds
number (Rep), χ includes vertical shearing of fluid velocity, ξ takes into account of different distributions
of αs, A = A (αf ) is the mobility of the fluid at the interface [35], and NR and NRA

are Reynolds numbers
associated with the classical Newtonian, and enhanced non-Newtonian fluid viscous stresses respectively
[37, 38]. Also, slope topography is represented by b = b(x).

There are two important aspects of the model equations (1)-(3). Firstly, the inertial terms on the left hand
side of (2)-(3) include the lateral pressure (associated with s and f ) and the virtual mass coefficient C.
Secondly, the source in the solid momentum has three different contributions: (i) gravity, the Coulomb
friction and the slope gradient (first square brackets), (ii) terms associated with the buoyancy force (second
square brackets), and (iii) the generalized drag contribution (CDG) (last term).

The source term for the fluid momentum equation (4) has six different contributions: The first three terms
emerge from the gravity load (first term), the fluid pressure gradient at the bed (second term), and the
fluid pressure applied to the topographic gradient (third term), the fourth and fifth group of the terms
associated with NR and NRA

are the Newtonian viscous, and the solid-volume-fraction-gradient-enhanced
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non-Newtonian viscous stresses respectively, the last term is due to the drag force. The term associated with
βs in (2) accounts for the buoyancy-reduced lateral pressure. The solid load is reduced by the buoyancy
force by the factor (1−γ ) as seen in pbs , Coulomb friction and in the drag term, CDG. The non-dimensional
number NRA

is termed as the mobility number [35].

3 Characteristic Speeds and Critical Flows

The characteristic speeds are determined from the eigenvalues of the system. In the model equations (1)-(3),
the solid and fluid phase velocities us, uf , and the solid and fluid volume fractions, αs, αf , can be expressed
as us = ms/hs, uf = mf/hf , αs = hs/h, αf = hf/h, so that αs/αf = hs/hf , where ms = hαsus and
mf = hαfuf are solid and fluid component momentum fluxes respectively. With these relations, equations
(1)-(3) can be put in the matrix form as

∂T(W)

∂t
+
∂F(W)

∂x
= S(W), (6)

where T = T (W) is the vector of the virtual mass induced generalized conservative variables, F= F(W)
is the vector of transport fluxes in the x-direction with:
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For simplicity, and only for the purpose of generating simple but exact eigenvalues, the virtual mass
coefficient C is set to zero. Then, T→W, and F takes the simple form:

F =


ms

mf
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s

hs
+ 1

2βshs(hs + hf )
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f

hf
+ 1
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The mass and the momentum fluxes for the solid and the fluid are ms, mf ; and the depth-averaged

momentum fluxes
m2

s

hs
+

1

2
βshs(hs + hf ),

m2
f

hf
+

1

2
βfhf (hf + hs) for both components. One of the main

tasks here is to obtain the eigenvalues of the system (6) as characterized by (8). The eigenvalues are
associated with the matrix

A =
∂F

∂W
=



0 0 1 0

0 0 0 1

−u2s + βsαsh+ 1
2βsαfh

1
2βsαsh 2us 0

1
2βfαfh −u2f + βfαfh+ 1

2βfαsh 0 2uf


·

The eigenvalues of A are given by the roots of the characteristics polynomial equation |A− λI| = 0 in λ;
the roots for λ are given by

(−u2s + βsαsh+
1

2
βsαfh+ 2λus − λ2)(−u2f + βfαfh+

1

2
βfαsh+ 2λuf − λ2) =

1

4
βsβfαsαfh

2. (9)
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4 Determination of Eigenvalues By Rational Factorization

The last term of (9) generates from the lateral hydraulic pressure gradients for the solid (0.5βsαsh) and
for the fluid (0.5βfαfh); these terms may play dominant role in determining the eigenvalues of the sys-
tem during the flow inception, flow obstacle interactions, diverging and converging flows, and during the
deposition process; the terms βs and βf are the lateral hydraulic pressure parameters for solid and fluid
respectively, whereas αs and αf are the solid and fluid volume fractions which are less than unity. But
the depth of debris may be less than or equal to, or greater than unity; so, we may consider two special
situations, namely h > 0 and 0 < h < 1.

4.1 For general debris height; i.e., h>0

The total debris height is always greater than zero. Here, in order to obtain some easily computable /ob-
tainable eigenvalues, we propose two “rational factorizations”. The essence of these rational factorizations
can be justified later after getting the more complicated general eigenvalues for the solid and the fluid
phases. Based on a generalized two-phase mass flow model [35], we are motivated to apply rational factor-
ization that paves the way for obtaining quick and technical eigenvalues against the much more complicated
eigenvalues. This provides us with some basic and fundamental understanding of the much more complex
system. But, this procedure do not fully follow the mathematical rigorousness.

I. Factorizing into solid and fluid lateral pressure contributions

Based on the physical process involved in the two-phase solid and the fluid mixture, by inspection, the term
on the right hand side in (9) can be factorized into the solid and fluid lateral pressure contributions as

1

4
βsβfαsαfh

2 =

(
1

2
βs(hαs)

)(
1

2
βf (hαf )

)
=

(
±1

2
βshs

)(
±1

2
βfhf

)
.

Here, for consistency, the sign must be taken either both positive, or both negative. Then, (9) can be
written as(
−u2s+βs(αsh)+

1

2
βs(αfh)+2λus−λ2

)(
−u2f +βfαfh+

1

2
βfαsh+ 2λuf−λ2

)
=

(
±1

2
βshs

)(
±1

2
βfhf

)
.

Following the structure and involved variables, our experience tell that the expression in the first bracket
on the left hand side of (9) is mainly associated with the solid constituent. Similarly, the second bracket is
associated with the fluid constituent. Therefore, motivated from this, and from a practical point of view,
(9) can effectively be factorized into solid and fluid contributions, with the associated eigenvalues for solid
(λs) and the eigenvalues for the fluid (λf ), as:

(−u2s + βs(αsh) +
1

2
βs(αfh) + 2λsus − λ2s) =

(
±1

2
βshs

)
,

(−u2f + βf (αfh) +
1

2
βf (αsh) + 2ufλf − λ2f ) =

(
±1

2
βfhf

)
.

These equations can be written as quadratic equations in λs and λf as

λ2s − 2λsus +

(
u2s − βshs −

1

2
βshf ±

1

2
βshs

)
= 0, (10)

λ2f − 2ufλf +

(
u2f − βfhf −

1

2
βfhs ±

1

2
βfhf

)
= 0. (11)
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Solving the equation (10) for λs, and (11) for λf , we get

λs = us ±

√
u2s −

(
u2s − βshs −

1

2
βshf ±

1

2
βshs

)
, (12)

λf = uf ±

√
u2f −

(
u2f − βfhf −

1

2
βfhf ±

1

2
βfhf

)
. (13)

The first set of eigenvalues: Taking the positive sign inside the radicals in (12) and (13), the first set
of eigenvalues for solid and fluid phases, respectively, are

λs = us ±
√

0.5βs(hs + hf ), λf = uf ±
√

0.5βf (hs + hf ). (14)

Single-phase classical eigenvalues: Equations (14) are more general eigenvalues as they reduce to the
classical eigenvalues for solid-only (flows of granular materials), and fluid-only (flows of fluid) when hs ≈ hf
[36], ( see, (15) )below. If hs ≈ hf , they imply usual eigenvalues for single-phase (solid) and single-phase
(fluid), separately, as:

λs = us ±
√
βshs, λf = uf ±

√
βfhf . (15)

The second set of eigenvalues: Taking the negative sign inside the radicals in (12) and (13), the second
set of eigenvalues for solid and fluid phases, respectively, are

λs = us ±
√

0.5βs(hs + hf ) + βshs, λf = uf ±
√

0.5βf (hs + hf ) + βfhf . (16)

Comparison between the first and second sets of eigenvalues: It is interesting to compare the solid-
and fluid-phase wave speeds (expressions with radicals) in (14) and (16). Wave speeds in (14) are reduced
by βshs, βfhf , as compared to the same in (16). In (16), the respective wave speeds are just the one half
of the speeds of the debris bulk, because hs + hf = h. However, in (15) the respective solid and fluid wave
speeds are the classical wave speeds, namely, βshs for solid, and βfhf for fluid, that are enhanced by the
one half of wave speeds of the debris bulk with respect to βs and βf .

II. Assigning equal factors

Another possibility to factorize the term on the right hand side of (9) is simply to factorize the whole term
as:

1

4
βsβfαsαfh

2 =

(
1

2
βs(hαs)

)(
1

2
βf (hαf )

)
=

(
±1

2

√
βshsβfhf

)2

.

So, the equation (9) can be written as(
−u2s+βs(αsh)+

1

2
βs(αfh)+2λus − λ2

)(
−u2f +βfαfh+

1

2
βfαsh+2λuf−λ2

)
=

(
±1

2

√
βshsβfhf

)2

.

It is natural to assume that the lateral solid and fluid pressures (βshs) and (βfhf ), influence the dynamics
of one another. Then, it is legitimate to factorize the above expression into the solid and fluid structures,
as (

−u2s + βs(αsh) +
1

2
βs(αfh) + 2λsus − λ2s

)
= ±1

2

√
βshsβfhf ,(

−u2f + βf (αfh) +
1

2
βf (αsh) + 2ufλf − λ2f

)
= ±1

2

√
βshsβfhf ,

i.e., λ2s − 2λsus +

(
u2s − βshs −

1

2
βshf

)
± 1

2

√
βsβfhshf = 0, (17)

λ2f − 2ufλf +

(
u2f − βfhf −

1

2
βfhs

)
± 1

2

√
βsβfhshf = 0. (18)
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The third set of eigenvalues: Solving (17) for λs and (18) λf , the third set of eigenvalues for the solid
and fluid phases, respectively, are

λs = us ±
√
βs(hs + 0.5hf )∓ 1

2

√
βsβfhshf , λf = uf ±

√
βf (hf + 0.5hs)∓

1

2

√
βsβfhshf . (19)

These are more general eigenvalues of the system (6) than those in (14) and (16).

Simplified eigenvalues: From the eigenvalues in (19), we can obtain some nice and simplified eigenvalues
by assuming hs ≈ hf , and βs ≈ βf , then, the solid and the fluid eigenvalues, respectively, reduce to:

λs = us ±
√
βshs + 0.5βs(hs ± hs), λf = uf ±

√
βfhf + 0.5βf (hf ± hf ).

Hence, the reduced and simple eigenvalues (first set for minus sign and second set for plus sign) are:

λs = us ±
√
βshs; λs = us ±

√
2βshs,

λf = uf ±
√
βfhf ; λf = uf ±

√
2βfhf . (20)

This implies that (16), (19) and (20)(right column) are the enhanced eigenvalues whereas (13) and (20)
(left column) are somehow reduced eigenvalues.

4.1.1 Negligible pressure gradient

In simple situations, at least one of the lateral hydraulic pressure gradients may be negligible, which can
lead to three different situations, each justifies the neglection of the last term in (9); this paves the way for
the direct and immediate factorization of (9).

A. Negligible solid lateral pressure βshs/2 ∼ 0:

This may be an observable situation even in natural two-phase flows when the wave or the surge of a debris
flow propagates in which the distribution of solid can be approximated to be uniform along the downslope
direction. However, due to the surge (primary, or secondary), and thus the changing geometric profile of
the debris, the lateral hydraulic pressure for the fluid may not be negligible. Alternatively, if some part
of the debris flow is locally dominated by the fluid component, e.g., say the tail, then αs ∼ 0. This, then
minimizes the effect of the solid pressure gradient to zero.

B. Negligible fluid lateral pressure, βfhf/2 ∼ 0:

This is similar to A, but in a contrasting situation when the solid is replaced by the fluid. In particular,
if locally some part of the debris is solid dominated, say, e.g., the leading head, then αf ∼ 0. This, then
minimizes the effect of the fluid pressure gradient to zero.

C. Negligible solid and fluid lateral pressure, (βshs/2)(βfhf/2)� 1:

This may happen in some particular situations when both the solid and the fluid lateral pressure gradients
are small (say less than unity); this is the case, specially in more flat flows; then, their product can be
neglected.

4.2 For a thin debris flow height, i.e., when 0 < h < 1

The height of the debris flow can be assumed relatively thin, e.g., for small volume. This may be a
valid assumption after the flow travels a sufficient down slope distance and before it comes to the sudden
deposition. This means that this approximation can be more accurate in the long and main flow path. We
also note that, here the flow variables and parameters are non-dimensional. The solid and fluid volume
fractions αs, αf are less than unity and the earth pressure coefficients βs and βf are also less than unity,
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then the last term, i.e.,
1

4
αsαfβsβfh

2 in (9) can be neglected. With this, the complexity is now reduced

heavily. So, (9) can be written as

(−u2s + βsαsh+
1

2
βsαfh+ 2λus − λ2)(−u2f + βfαfh+

1

2
βfαsh+ 2λuf − λ2) = 0. (21)

This is a prefect factorization which facilitates direct solution for the solid and the fluid eigenvalues. As
before, based on their dynamics, we assign the solid and fluid eigenvalue variables λs and λf to the first
and second brackets on the left hand side of (21). So, we get quadratic equations in λs and λf as follows:

λ2s − 2λsus +
(
u2s − βshs − 0.5βshf

)
= 0, (22)

λ2f − 2λuf +
(
u2f − βfhf − 0.5βfhs

)
= 0. (23)

Solving (22) for λs and (23) for λf , the third set of eigenvalues for the solid and fluid phases, respectively,
are

λs = us ±
√
βs(hs + 0.5hf ), λf = uf ±

√
βf (hf + 0.5hs). (24)

It is important to note that the eigenvalues (24) are exactly the same phase-eigenvalues for solid- and fluid-
phases as derived by Pudasaini (2012). However, here, these eigenvalues are determined by using much
less assumptions than in Pudasaini (2012). Again, note that, in the limit, when the fluid volume fraction
vanishes, λs reduces to the classical single-phase granular flow eigenvalues, and in the limit when the solid
volume vanishes, λf reduces to the classical single-phase fluid in (24) reduces to the classical single-phase
fluid flow eigenvalues. They, respectively, are

λs = us ±
√
βshs, λf = uf ±

√
βfhf . (25)

It is worth to note that the solid-wave celerity in (24) is enhanced by one-half of the fluid height hf/2 in
comparison to the wave celerity of the single phase granular flows in (25); the same holds for the fluid-
phase wave-celerity. Relevant analysis and discussions on the eigen-structure of two-phase and multi-layer
flows can be found in, including, Audusse (2005), Pitman and Le (2005), Bouchut and Morales (2008),
Fernandez-Nieto et al. (2008), Pelanti et al. (2008), Castro et al. (2010), and Castro-Diaz et al. (2011).

The fourth set of eigenvalues: The fourth set of eigenvalues for the solid and the fluid phase have three
different cases. From (24),the corresponding solid and fluid eigenvalues for Case A are:

λs = us ±
√

0.5βshf , λf = uf ±
√
βf (hf + 0.5hs). (26)

There are three interesting aspects in these eigenvalues. First, if the debris flow is largely dominated by
the fluid component, the fluid may move faster than the solid (Pudasaini, 2012), as indicated here by
the solid- and fluid-phase wave celerities

√
0.5βshf , and

√
βf (hf + 0.5hs), respectively. This is reflected

by these eigenvalues for situation A. Second, importantly, although the solid lateral pressure gradient is
negligible, the fluid lateral pressure (associated with βf ) plays crucial role, so does the solid-phase velocity
in determining the fluid and the solid-phase eigenvalues. Third, even if the solid pressure gradient could
be neglected, there are interactions between the solid and the fluid and thus, even for the solid, the wave
celerity is determined by the product of the inter-phase solid and the fluid parameters (variables), βs and
hf .

From (24), the corresponding solid and fluid eigenvalues for Case B are:

λs = us ±
√
βs(hs + 0.5hf ), λf = uf ±

√
0.5βfhs. (27)

The same analysis as in A can be applied for B; this is the situation, particularly, when the flow (at least
locally, say e.g., the solid-dominated front, Pudasaini, 2012) is largely dominated by the solid constituent.
This is so, because in this solid-like situation change in the amount of fluid may be negligible. Note that
A is applicable for more fluid-like situation.
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Figure 1: Simulation setup of the two-phase debris flow with initial triangular debris mass consisting of
50% solid, 50% fluid, and the inclination of channel is ζ = 45◦.

The situation C is the produce of A and B which is associated with the even more simplified eigenvalues
resulting from (24):

λs = us ±
√

0.5βshf , λf = uf ±
√

0.5βfhs. (28)

However, it is important to note that the wave celerities in (28) are determined by the overarching products
(βs with hf , βf with hs ) of the inter-phase solid and the fluid parameters (variables). In all these three
cases, we observe different types of couplings between the solid and the fluid via the eigenvalues (or the
wave celerities). This also strongly implies that the debris motion is characteristically a two-phase flow
phenomena. Even more strong couplings are derived in Pokhrel (2014).

5 Simulation Results

5.1 Numerical method, initial set-up and parameter choice

We implement high-resolution numerical simulation technique based on the widely used total variation
diminishing (TVD), shock capturing, non-oscillatory central (NOC) differencing method [27, 34, 36, 40, 42].
We consider two different simulation scenarios: (i) with the classical solid-only and fluid-only eigenvalues
(15), and (ii) the coupled eigenvalues for solid and fluid phases as given in (14), (16), (24), (26), (27) and
(28). The geometrical setting of the simulations is given in Figure 1; initial triangular debris mass is a
homogeneous mixture of debris material consisting of 50% solid and 50% fluid. For the simulations, the
parameters are taken to be

δ = 15◦, φ = 35◦, NR = 3× 107, NRA
= 1.5× 107, C = 0.5, χ = 3, ζ = 45◦,

P = 0.5, J = 1, ρs = 2500 kgm−3, ρf = 1100 kgm−3, Rep = 1, UT = 1.

The choice of the parameters is based on the physics of debris flows as employed in the Pudasaini (2012),
Pudasaini and Krautblatter (2014), Kattel et al. (2016), Kafle et al. (2016) and Mergili et al. (2017).

5.2 Description of the result

Considering the geometrical and physical setting as discussed in section §5.1, we carry on simulations with
different set of eigenvalues (14), (16), (24), (26), (27) and (28) of the model. Simulations with classical
uncoupled solid only and fluid only eigenvalues are also presented in grey in each of the simulations results
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Figure 2: Time and spatial evolution of the solid- and the fluid-phases in a real two-phase debris flow down
a channel. The solid and fluid phases are represented by the solid and the dashed lines, respectively. The
grey lines are the simulation results as computed with the classical un-coupled solid-only and fluid-only
eigenvalues (15). The colour lines are the simulations with the coupled and the enhanced eigenvalues (14)
for the solid- and the fluid-phases.

Figure 3: Time and spatial evolution of the solid- and the fluid-phases in a real two-phase debris flow down
a channel. The solid and fluid phases are represented by the solid and the dashed lines, respectively. The
grey lines are the simulation results as computed with the classical un-coupled solid-only and fluid-only
eigenvalues (15). The colour lines are the simulations with the coupled and the enhanced eigenvalues (16)
for the solid- and the fluid-phases.
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Figure 4: Time and spatial evolution of the solid- and the fluid-phases in a real two-phase debris flow down
a channel. The solid and fluid phases are represented by the solid and the dashed lines, respectively. The
grey lines are the simulation results as computed with the classical un-coupled solid-only and fluid-only
eigenvalues. The colour lines are the simulations with the coupled and the enhanced eigenvalues (24) for
the solid- and the fluid-phases.

Figure 5: Time and spatial evolution of the solid- and the fluid-phases in a real two-phase debris flow down
a channel. The solid and fluid phases are represented by the solid and the dashed lines, respectively. The
grey lines are the simulation results as computed with the classical un-coupled solid-only and fluid-only
eigenvalues (15). The colour lines are the simulations with the coupled and the enhanced eigenvalues (26)
for the solid- and the fluid-phases.

to compare with the simulation results for all the new set of eigenvalues.

Figure 2 displays the simulation results for the two-phase debris flows as it moves down the inclined channel
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Figure 1 using the phase-eigenvalues (14). Here, we analyze in detail the dynamics of the solid and the
fluid components in the mixture as shown in Figure 1. After the debris mass is triggered, the solid-phase
and the fluid-phase of the debris mixture evolve dynamically differently; the fluid moves faster in the front-
and slowly in the backward directions leading to bulging of the fluid in both sides of the debris body. It
is observed that the front and tail are dominated by the fluid component whereas the central part of the
debris body consists of more solid fraction. Results are shown for the evolution of both the solid- and
fluid-phases for t = 3 s (green), t = 5 s (blue) and t = 8 s (red), respectively, in which the solid lines
represent the dynamics of the solid phase, and dashed lines represent the dynamics of the fluid phase.
The grey lines correspond to the simulations of the two-phase debris flows in which the eigenvalues are
considered to be the classical un-coupled solid-only and fluid-only eigenvalues as given in (15). After the
debris mass collapse, both solid and fluid spread to the leading and trailing edges of the debris body (both
in classical solid only and fluid only (15) and the first set coupled eigenvalues (14)). Both the leading and
trailing edges are dominated by fluid; fluid shows more dispersion than solid grains have more resistance
due to friction (basal and internal); the flow advects downslope direction as time progress and the geometry
of the flow has been changing. As a result, the middle part of the debris body losses some fluid and is
solid-rich. This solid-rich middle part of the debris body induces drag and hinders the fluid flow of the
rear part. Because of this rear part of the debris body is dominated by fluid. In each time slices (t = 3
s, 5 s or 8 s), the peak solid height exceeds the peak fluid height because of the less dispersion of solid
mass than fluid. As time progress the leading and the trailing edges of both solid and fluid substantially
advects downslope; the increasing distance between the rear and the front part of the debris is due to the
dispersion of the solid and fluid masses. This results in the decrease of the peak heights; the solid peak
heights decrease from nearly 2.5 m (t = 3 s) to 1 m (t = 8 s); the solid surge heads are located at x = 46
m at t = 3 s, x = 71 m at t = 5 s and x = 245 m at t = 8 s. On comparing the results with classical
eigenvalues (15), the solid peak heights are nearly same at t = 3 s and t = 5 s but a bit less at t = 8 s.
This is because, there is larger dispersion of solid mass at t = 8 s in case of classical eigenvalues (15); the
fluid has shown multiple surges around the middle to frontal part of the debris body. The major difference
in the results due to the different eigenvalues of the model system is in the difference of the position of the
leading and the trailing edges. In each times slice, the position of these edges are a bit farther downslope in
case of solid- and fluid- phase coupled eigenvalues (colored plots) than in the case of solid- only and fluid-
only classical eigenvalues (grey plots). At t = 8 s, the red (solid and dashed) lines has the leading edges
nearly at x = 350 m whereas the grey lines have those nearly at x = 333 m only. Thus, the flow is more
mobile and travels much faster for both the solid and the fluid phases (because they are coupled) with the
coupled and enhanced eigenvalues (14) than with the classical uncoupled solid only and fluid only set of
eigenvalues (15). In all of the following simulations results the classical solid- and fluid-phase dynamics
using classical solid only and fluid only eigenvalues (15) are also kept to compare with each of the other set
of coupled solid-phase and flui-phase eigenvalues (16), (24), (26), (27) and (28).

Figure 3 plots the simulation results for the two-phase debris flows as it moves down the inclined channel
Figure 1 using the phase-eigenvalues (16). Results are shown for the evolution of both the solid- and fluid-
phases for t = 3 s (green), t = 5 s (blue) and t = 8 s (red), respectively, in which the solid lines represent
the dynamics of the solid phase, and dashed lines represent the dynamics of the fluid phase. The grey
lines correspond to the simulations of the two-phase debris flows in which the eigenvalues are considered
to be the classical un-coupled solid-only and fluid-only eigenvalues (15). The front and tails of the solid
and fluid are faster downslope at all the time slices as compared to Figure 2. At t = 3 s and 5 s, the
solid is a bit less dispersed with slight increase of peak heights but the fluid peak heights are substantially
increased. It is interesting to observe that at t = 8 s, the solid peak heights are nearly same but the fluid
peak height is a bit increased as compared with Figure 2 (with eigenvalues (14)). The solid and fluid flow
is even more enhanced in this case as compared with Figure 2 and substantially enhanced as compared
to the case of classical eigenvalues (grey lines); the leading edge for both solid fluid reach the downslope
distance of x = 350 m.

The simulation results using the phase-eigenvalues (24) are presented in Figure 4. In this case, the leading
and trailing edges of the solid and fluid for all time slices are less farther downslope as compared to Figure 3;
the peak heights of both solid and fluid are noticeably decreased at t = 3 s and t = 5 s. On contrary at
t = 8 s, the peak heights are almost same. Although the flow dynamics, here, is a bit enhanced as compared
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Figure 6: Time and spatial evolution of the solid- and the fluid-phases in a real two-phase debris flow down
a channel. The solid and fluid phases are represented by the solid and the dashed lines, respectively. The
grey lines are the simulation results as computed with the classical un-coupled solid-only and fluid-only
eigenvalues (15). The colour lines are the simulations with the coupled and the enhanced eigenvalues (27)
for the solid- and the fluid-phases.

Figure 7: Time and spatial evolution of the solid- and the fluid-phases in a real two-phase debris flow down
a channel. The solid and fluid phases are represented by the solid and the dashed lines, respectively. The
grey lines are the simulation results as computed with the classical un-coupled solid-only and fluid-only
eigenvalues (15). The colour lines are the simulations with the coupled and the enhanced eigenvalues (28)
for the solid- and the fluid-phases.

to the classical eigenvalues (15), but it is less enhanced as compared to the eigenvalues (16).

Figures (5) -(7) present the results by using the sets of eigenvalues in case (A) (26), case (B) (27) and case(C)
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(28) respectively. The solid- and fluid-phase dynamics remain almost same in these figures. Although the
flow is little bit enhanced as compared to the classical eigenvalues, but are less enhanced than the second
set of eigenvalues (16)(Figure 3). However, a close scrutinizing of the leading edges of the solid- and fluid-
phases in t = 8 s shows that, the fluid phase is little more enhanced in Figure 5 and the solid-phase is little
more enhanced in Figure 6 as compared with Figure 5 and Figure 6 and also with Figure 7.

These simulation results show that the solid- and fluid-phase coupled eigenvalues (14), (16), (24), (26),
(27) and (28) provide enhanced flow dynamics as compared to the classical solid only and fluid only
eigenvalues (15). Among them the second set of eigenvalues (16)(Figure 3) gives the most enhanced flow
dynamics. As the eigenvalues determine the wave speeds of the flow which eventually determine the
intrinsic simulation dynamics of the flow via the CFL conditions, with the physically more appropriate
coupled eigenvalues, in which the solid and the fluid eigenvalues are coupled to each-other via, e.g., the
geometric evolutions of the solid and the fluid components and the other physical parameters, the flow
mobility is substantially enhanced as measured, e.g., from the frontal distances of the evolution of the solid
and the fluid phases in both simulation scenarios. This, then clearly indicates that the physically more
meaningful and complete eigenvalues are required for the reliable prediction of the fluid dynamical variables,
to appropriately determine the enhanced flow dynamical quantities, including the evolution of the solid-
and fluid-phase, fluid volume fraction, total debris and landslide height, inundation area, phase velocities,
and the impact forces. A formally obtained eigenvalues of a system of partial differential equations (PDEs)
contain two different contributions: kinetic energy (thus the relevant velocity of solid-fluid) and the potential
energy (i.e., pressure potential energy so the wave speed ). For a single phase flows such as shallow water
flows or granular flows or landslides, avalanche and single-phase debris flows, the wave celerity ( for long
wave ) is simply given by the square root of the product of the pressure factor β = ρg cos ζK and the flow
depth h, i.e.,

√
β h. However, for the coupled mixture flows it is not clear what is the wave celerity. The

most legitimate way of obtaining the wave celerity of a system is to compute the eigenvalues of the system
of PDEs representing the mixture flows. More general eigenvalues of the real two-phase model can be found
in Pokhrel (2014).

6 Conclusions

We have derived several coupled solid- and fluid-phase eigenvalues for the real two-phase debris flow model
by using rational factorization method in different assumptions, and also presented some analytically derived
coupled solid- and fluid-phase eigenvalues for the real two-phase debris flow model [35]. Simulation results
using these phase-eigenvalues influenced substantially in the dynamical behavior of the debris mass flows.
The correct and enhanced descriptions of the mass flows by these eigenvalues were derived by including
the solid and the fluid properties of the mixture. This is one of the main aspects of this contribution.
High-resolution, shock-capturing scheme has been implemented to solve the model equations numerically.
Advanced computational results has been presented and compared with the new coupled phase-eigenvalues
for the solid and fluid-phases, and the pre-existing un-coupled solid-only and fluid-only eigenvalues. The
results clearly indicates that the coupled eigenvalues are necessary to appropriately simulate real two-phase
debris flows, to enhanced determination the flow mobility and inundation areas.
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