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Abstract: This paper gives an insight to the Galois theory and discusses its applications in both pure and
applied mathematics. First, the Fundamental theorem of Galois theory is applied to compute the Galois
groups of polynomials and to prove the non-existence of a formula for solving a polynomial equation in
rational coefficients having degree n ≥ 5. Then the Galois fields which are finite fields are applied to the
error-correcting codes and cryptography in computer science. There are no general rules to compute the
Galois groups of polynomials of degree more than four. Two new examples of Galois groups of polynomials
of degree greater than four are introduced and the concept of Galois group of a single variable polynomial
is extended to the Galois group of a multi-variable polynomial.
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1 Introduction

The foundation of Galois theory was laid by the French mathematician Évariste Galois (1811-1832) by
determining the necessary and sufficient condition for solving a polynomial equation by radicals [1]. Ga-
lois theory has evolved a lot from then and has found its applications in wide range of fields from pure
mathematics especially in abstract algebra, algebraic number theory to algebraic geometry, and to applied
mathematics. This paper is limited to its applications in abstract algebra and in computer science.

Modern Galois theory is a theory of field extension which is a vast theory. The core-part of the Galois
theory is the Fundamental theorem of Galois theory [3]. The Fundamental theorem links a Galois extension
to its Galois group. Let F be an extension field of a field K. The group of all automorphisms of F that
fixes K is called the Galois group of F over K, and it is denoted by AutFK [3]. The extension field F of K
is said to be a Galois extension of K or Galois over K if the fixed field of the Galois group AutFk is K itself
[3].

Theorem 1.1 (The Fundamental Theorem [3]). If F is a finite dimensional Galois extension of K,
then there is a one-to-one correspondence between the set of all intermediate fields of F over K and the set
of subgroups of the Galois group AutFK such that:

1. the relative dimension of two intermediate fields is equal to the relative index of the corresponding
subgroups. In particular AutFK has order [F : K];

2. F is Galois over every intermediate field E, but E is Galois over K if and only if the corresponding
subgroup E′ = AutFE is normal in G = AutFK . In this case G/E′ is isomorphic to the Galois group
AutEK of E over K.

A field E such that K ⊂ E ⊂ F is said to be an intermediate field of F over K [3]. The index of a subgroup
H of a group G is the order of G over H [3].

The Fundamental theorem links field theory to group theory. This allows us to use the tools of group
theory to solve the problems of field theory. Solving a polynomial equation is a problem of field theory.
We can use the insights of group theory to solve this problem of field theory which is discussed in some
detail in the coming section. Also, the Fundamental theorem gives some insights of the structure of a field
extension. The structure of a field as an extension field over some field is mirrored in the structure of
its Galois group which is a group of automorphisms but these automorphisms are the symmetries of the
field. So, the structure of field extension is equals to its own symmetry. And, the structure of a field is a
complicated thing; specially if it is infinite. But the structure of a group is rather a simple thing; especially
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if it is finite. So the Galois theory has fairly simplified the complicated thing in a very insightful and
beautiful way. So, Galois theory gives a new sights of study of fields which is study of fields via study of
its automorphisms.

Structure of a field F Structure of its symmetry

F

E
Equivalent

K

{e}

H

G

Figure 1: Equivalency

The Fundamental theorem also gives a beautiful insights to the nature of a number which depends upon the
underlying field. σ : {a+ b

√
2} 7→ {a− b

√
2} where a, b ∈ Q is a field-automorphism of Q(

√
2) that fixes Q.

This map σ is also denoted by
√
2 7−→ −

√
2. So, any polynomial equation over Q satisfied by the number√

2 is also satisfied by the number −
√
2. We can fluidly pass between these two numbers and the equation

with a rational coefficient will not know. Hence the two numbers
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Figure 2: Field containing
√
2

After the Fundamental theorem, next concept in Galois theory we are applying is the Galois field. The
Galois field GF(q) is a field containing q number of elements. Since a Galois field contains a finite number
of elements, and it can be represented using finite number of integers [1] and Galois fields are the finite
extension of prime fields.

GF (pn) = {0, 1, ..., p− 1} ∪ {p, p+ 1, ..., p+ p− 1} ∪ ... ∪ {pn−1, pn−1 + 1, ..., pn−1 + pn−2 + ...+ p− 1}

where p is a prime. This representation of a Galois field is called the integer representation. Then

GF (2) = {0, 1}
GF (23) = {0, 1} ∪ {2, 2 + 1} ∪ {22, 22 + 1, 22 + 2, 22 + 2 + 1} = {0, 1, 2, 3, 4, 5, 6, 7}

Here, the digits 2, 3, .., 7 of the field GF (23) do not lie in the field GF (2). If we look the field GF (23) as
an extension field of GF (2) and write its elements using only the elements of the base field GF (2) then we
have the following representations as shown in Table 1.
For a field F and an irreducible polynomial f(x) ∈ F [x] the quotient ring F [x]/(f(x)) is a field [1]. If
F is a finite field and f(x) ∈ F [x] is irreducible then F [x]/(f(x)) is a finite field. This field consists of
all polynomials modulo f(x). If F = GF (23) then x8 + x7 + ... + x + 1 ∈ F [x] is irreducible in F [x].
Since F has 8 elements which are modulo 8, elements of F is represented by the elements of the factor
ring F [x]/(f(x)) [7]. In the field GF (23), the number 5 has the representation 22 + 1. This gives the
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Digits Expansion Binary rep..
3 2 + 1 011
4 22 + 21 × 0 + 20 × 0 100
5 22 + 1 110

Table 1: This is actually binary representation of the finite field over GF(2).

polynomial representation x2 + 1 = (1, 0, 1) (coefficient of x2 is 1 of x is 0 and of constant is 1) Now the
binary equivalent of 5 is 101.

2 Application to the Galois Groups of Polynomials

The fundamental theorem finds its application directly in determining and computing the Galois group of
a polynomial. The Galois group of a polynomial gives insights about the nature of roots of the polynomial
and tells us whether the polynomial equation can be solved by radicals or not. The Galois group G of a
polynomial f ∈ K[x] is the group AutFK , where F is a splitting field of f over K [3]. A minimal field F
where a polynomial f ∈ K[x] splits into linear factors and thus contains all roots of f(x) is called a splitting
field of f over K [3].

First, we know the nature of the Galois group G using the fundamental theorem. The group of automor-
phism of F is given by the permutations of roots of f . Hence G is a subgroup of the symmetric group Sn

[3]. Since the F is a splitting field of irreducible f over K this field F is a Galois extension of the field
K if all the roots u1, ..., un of f are simple roots (i.e if f is separable over K) so F = K(u1, ..., un). Now
for ui ̸= uj there exists an field-homomorphism σ : K(ui) 7→ K(uj) which extends to field-automorphism
of F that fixes K. Thus for each ui ̸= uj there exists σ ∈ G such that σ(ui) = uj and hence the G is a
transitive subgroup of Sn.

Theorem 2.1 ([3]). Let G be a Galois group of a polynomial f ∈ K[x]. G is isomorphic to a subgroup of
some symmetric group Sn. If f is separable of degree n, then n divides |G| and G isomorphic to a transitive
subgroup of Sn.

If f is irreducible over the field of rationals Q, then f is separable [3]. So first, we discuss the Galois
group of irreducible polynomials. The only non-trivial transitive subgroup of S2 is S2 itself. and hence the
Galois groups of an irreducible quadratic polynomial is S2. The non-trivial transitive subgroups of S3 are
A3 and S3 itself. Hence the Galois group of a irreducible cubic is A3 or S3. The technique to compute
the Galois group of an irreducible quartic is to first determine its resolvant cubic. The cubic polynomial
whose roots are α, β, γ where, α = u1u2 + u3u4, β = u1u3 + u2u4, γ = u1u4 + u2u3 and u1, u2, u3, u4 are
the roots of f , is called the resolvant cubic of f [3]. The resolvant cubic is actually a polynomial over K
[3]. If V = {(1), (12)(34), (13)(24), (14)(23)}, then under the Galois correspondence the subfield K(α, β, γ)
corresponds to the normal subgroup V ∩G [3] because K(α, β, γ) is a splitting field of the resolvant cubic
whose Galois group is a subgroup of S3 and only normal subgroup N of S4 with |N | ≤ 6 is V . Hence

K(α, β, γ) is Galois over K and Aut
K(α,β,γ)
K = G/(G ∩ V ) [3].

Here G ⊆ S4 so if [K(α, β, γ) : K = 6], then from the statement-(i) of the fundamental theorem we
have |G/(G ∩ V | = [K(α, β, γ) : K] = 6, this gives the Galois group G of f is S4 itself as |V | = 4 and
|G/(G ∩ V | = 6 is possible only if |G| = 24. Similarly [K(α, β, γ) : K] = 3 the G = A4 and so on.
The determination and computation of Galois groups of polynomials of degree n ≥ 5 is not as easy and
straight forward as above because there are no general rules to compute it [3]. However we have the
following theorem and using this theorem we have computed the Galois groups of two polynomials one of
degree 5 and another of degree 7.

Theorem 2.2 ([3]). If p is a prime and f is an irreducible polynomial of degree p over Q which has precisely
two nonreal roots, then the Galois group of f is Sp.

The polynomial is f(x) = x5 − 10x + 5 ∈ Q[x] (quintic). Its graph is shown above. From its graph this
polynomial has only three real roots. This polynomial is irreducible over Q by the Eisenstein’s criterion
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Figure 3: Galois correspondence of the quartic

Figure 4: Plotted by the “GNU-Octave”, graph of f(x) = x5 − 10x+ 5

[3], so by Theorem-2.2, its Galois group is S5 which contains 5! = 120 elements.

Likewise, the polynomial is f(x) = x7 − 2x5 − 4x3 + 2x2 + 4x − 2 which is irreducible over Q by the
Eisenstein’s criterion [3]. Its graph is shown below.

Figure 5: The graph of f(x) = x7 − 2x5 − 4x3 + 2x2 + 4x− 2

The graph shows this polynomial has exactly five real roots. So exactly two of its roots are complex. Hence
by the Theorem-2.2 its Galois group is S7 which contains 7! = 5040 elements.

The Galois group of a reducible polynomial is computed by factoring it into irreducibles. For an reducible
polynomial f ∈ K[x], we factor f into irreducibles as f1f2...fk and compute the Galois group Gi of fi for
each i = 1, 2, ..., k. Then the Galois group G of f is isomorphic to a subgroup of

∏
Gi [4].

Example 2.3. Let f(x) = x4−7x2+15=f(x) = (x2−3)(x2−5), it is reducible over Q. Let f1(x) = (x2−3)
and f2(x) = (x2 − 5). Then f1, f2 are both irreducible over Q. The splitting field for f1 is Q(

√
3) so its

Galois group is Z2 [3]. The splitting field for f2 is Q(
√
5) so its Galois group is also Z2. Now we have the

Galois group of f is a subgroup of G = Z2 × Z2. Since the intersection of Q(
√
3) and Q(

√
5) is trivial the

Galois group of f is G itself.
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Example 2.4. The polynomial f(x) = x7 − 5x5 − 10x3 + 5x2 + 50x− 25 ∈ Q[x] factors into irreducibles
over Q as (x2 − 5)(x5 − 10x + 5). The Galois group of x2 − 5 is Z2 [4] and of x5 − 10x + 5 is S5 from
above. Also the roots of x2−5 are

√
5 and −

√
5 which are not the roots of x5−10x+5 from the its graph,

Figure-2. So the intersection of the splitting fields of these two factor polynomials of f is trivial. Hence
the Galois group of f is Z2 × S5.

Next we generalize the Galois group of a polynomial in single variable to the Galois group of a multi-
variable polynomial. The polynomial is f(x, y) = x + y ∈ Q[x, y]. Now the roots of f over all the
complex numbers. Hence its Galois group is S|C|.

Example 2.5. The polynomials in Q[x, y] are:

y = x2 + 1 (1)

y = x (2)

The roots of these simultaneous polynomials are ω, ω2. Then the splitting field of this system is Q(ω). Here
the automorphisms of Q(ω) are ω 7−→ ω and ω 7−→ ω2. Hence the Galois group of this system is S2

∼= Z2.

2.1 Application to the classic problem

The question: is every polynomial equation solvable by the method of radicals? is considered the classic
problem. To answer the question first we need to formulate the classic problem into a problem of field
theory. The formula by the method of radicals means the formula involving only field operations and the
extraction of nth roots [3]. The existence of a formula means there is a finite sequence of steps, each step
being a field operation or the extraction of an nth roots, which yields all solutions of the given polynomial.
Performing a field operation leaves the base field unchanged, but the extraction of an nth root of an element
c in a field K amounts to constructing an extension field K(u) with un ∈ K. Thus the existence of a formula
for solving f(x) = 0 would imply the existence of a finite tower of fields

K = E0 ⊂ E1 ⊂ ... ⊂ En

such that En contains a splitting field of f over K and for each i ≥ 1, Ei = Ei−1(ui) with some positive
power of ui lying in Ei−1 [3]. An extension field F = K(u1, ..., un) of K such that some power of u1 lies in
K and for each i ≥ 2 some power of ui lies in K(u1, ..., ui−1) is called a radical extension of K [3]. Thus
the polynomial equation f(x) = 0 in rationals is solvable by radicals if there exists a radical extension F of
K and splitting field E of f over K such that F ⊃ E ⊃ K. Conversely suppose there exists such a tower
of fields and that En contains a splitting field of f . Then

En = K(u1, u2, ..., un)

and each solution is of the form f(u1, ..., un)/g(u1, ..., un) where f, g ∈ K[x1, ..., xn]. Thus each solution is
expressible in terms of a finite number of elements of K, a finite number of field operations and u1, ..., un.
But this amounts to saying that there is a formula for the solutions of the particular given equation [3].
Now that we made a formulation our problem we make a use of the following theorems to deduce the result.
A group G is solvable if it has a solvable series and a finite chain of subgroups G = G0 > G1 > ... > Gn = e
such that Gi+1 is normal in Gi for 0 ≤ i < n and each factor group Gi/Gi+1 is abelian is called a solvable
series.

Theorem 2.6 ([3]). The following facts are holds by fundamental theorem of Galois group.

1. If F is a radical extension of K and E is an intermediate field, then AutEK is a solvable group

2. If the polynomial equation f(x) = 0 in rationals is solvable by radicals, then the Galois group of f is
a solvable group.

3. The symmetric group Sn is not solvable for n ≥ 5.
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The polynomial f(x) = x5 − 10x + 5 ∈ Q[x] has Galois group S5, which is not a solvable [3]. The quintic
polynomial equations over Q are not solvable by radicals. That is there does not exist an explicit formula
for solving the quintics. Moreover, polynomial equations of degree n ≥ 5 are not solvable by radicals [3].

Galois theory gives the precise condition under which a polynomial of degree n ≥ 5 is solvable by radicals
or not.

Example 2.7. The roots of polynomial is x5− 1 ∈ Q[x] are fifth roots of unity which forms a group under
addition modulo 5. Hence the Galois group is isomorphic to Z5 [3]. The group Z5 is cyclic and every cyclic
group is solvable [1]. Hence this polynomial can be solved by radicals.

3 Application to the Coding Theory

The Galois fields are applied in coding theory of computer science. To be able to detect and correct er-
rors during transmission of information in digital system, coding theory is developed. In digital system,
information are transmitted as strings of 0 and 1. So the fundamental of the coding theory is the manip-
ulation of strings of binary digits. The proper and complete manipulation of these strings is possibly only
if the space of the strings is a field. This finite field is a Galois field. The widely used field for coding in
electronically transmitting device is an extension field Z2 which is the field GF (2) consisting of 0 and 1.
Recent works has shown that it is possible to extend codes to more general type of numbers called rings.
This rings are called ”Galois rings” [2]. The idea of coding theory is to append some extra digits to the
information and use this to detect and possibly correct the errors during transmission. These codes are
called error-correcting codes [5]. One of such error-correcting code is a linear code which is a linear space.

Definition 3.1. [2] [Linear code] Let K = GF (q) be a Galois field. Then a finite extension of K of
dimension n is V = GF (q)n. A linear code C is a subspace of V . The code C has dimension k ≤ n and
the length n. It is called a (n, k) code.

The usefulness of linear code is that they are vector spaces over the base field so they have a basis. All
the code words can be generated with this basis. Instead of storing all 2k number of code words (for
k-dimensional binary codes), storing only k basis elements is sufficient which saves massive storage. For
the code C the generator matrix is defined as follows:

Definition 3.2. [2] [Generator Matrix] Let {v1, v2, ..., vk} be a basis of C. A generator matrix is the

k × n matrix G =


v1
v2
...
vk

.

The dual code of C is the set C⊥ = {x ∈ V | x.y = 0 ∀y ∈ V } [2]. The dual code is a code in itself and
has dimension n− k. The C⊥ is linear so it has a generator matrix.A generator matrix H of C⊥ is called
a parity check matrix. To apply (n, k) coding first we need to group our information into the blocks
of length k. u1, ..., uk, uk, ..., u2k,... . This space has dimension k. Now these block of codes are encoded
separately each to a code of length n as shown [5].

(u1, u2, ..., uk) Encoder (x1, x2, ..., xn)

Mathematically, the encoded vector x is obtained form the original vector u using the generator matrix G
by the relation x = uG [5].

To continue and complete the diagram.
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Transmission

(y1, y2, ..., yn)Corrector(x1, x2, ..., xn)Decoder(u1, u2, ..., uk)

We have a way of correcting the received information if it is distorted. This way of correcting is called
Syndrome correcting because it makes use of the syndrome of the received vector which is defined as
follows:

Definition 3.3. [2] [Syndrome] The syndrome of a vector y ∈ V is defined as

syn(y) =


y.h1

y.h2

...
y.hn−k

, where


h1

h2

...
hn−k

 is the parity check matrix of C.

Now the code C is a subgroup of V under addition moreover it is a normal subgroup of V . Two vectors in
V have the same syndrome if and only if they are in the same co-set of C [2]. Then we have the following
correcting process. Suppose the signal received is the vector y.

1. Determine its syndrome, syn(y).

2. Determine the co-set of C containing syn(y), say e+ C.

3. Then y = e+x for some x ∈ C. This implies x = y− e. Since x ∈ C, this x is the required correction
of y [2].

This e is also called ”error vector” [2].

Example 3.4. Consider a generator matrix G =

(
1 0 1 0
0 1 1 1

)
. Then the parity check matrix is

H =

(
1 1 1 0
0 1 0 1

)
. And the code generated by G is

C = {(0, 0, 0, 0), (1, 0, 1, 0), (0, 1, 1, 1), (1, 0, 1, 1)} ⊂ GF (24).

Suppose the received vector is y = (1, 1, 1, 0). Then y ̸∈ C so the information is distorted from the original
information. To get the original information:

syn(y) =

(
y.h1

y.h2

)
=

(
1
1

)
where h1 is the first row and h2 is the second row of H.

Now if e = (0, 1, 0, 0) then e + C =

(
1
1

)
so y − e = (1, 1, 1, 0) − (0, 1, 0, 0) = (1, 0, 1, 0) ∈ C is the original

information [2].

There is a more sophisticated error-correcting code than the linear codes called the cyclic code. Linear
codes are simple to implement but the correcting algorithm of linear codes are not efficient as it makes use
of matrix which is the generating matrix. The code C as defined in 3.1 is cyclic if (a0, a1, ..., an−1) ∈ C =⇒
(an−1, a0, ..., an−2) ∈ C. Suppose C is a code over a Galois field F = GF (q). Then there exist a correspon-
dence Φ : C 7→ F [x]/(xn − 1) such that {(a0, a1, ..., an−1), (a1, ..., an−1, a0), ...., (an−1, a0, ...., an−2)} 7−→
a0 + a1x + a2x

2 + ... + an−1x
n−1. This map Φ is a homomorphism. This shows that the cyclic code C

can be embedded into the ring Rn = F [x]/(xn − 1) [2]. For this reason cyclic codes are represented using
polynomial representation. We have the following theorem that characterizes the cyclic code.

Theorem 3.5 ([2]). A subset S of Rn corresponds to a cyclic code if and only if S is an ideal of Rn and
if S = (g(x)) if and only if g(x) divides xn − 1.
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This theorem determines all cyclic codes of a Galois field GF (pn). They are ideals of Rn and these ideals
are generated by the polynomials that divides xn−1. Thus cyclic codes have a generator polynomial which
is computationally simpler than having a generator matrix. Due to this some cyclic codes have efficient
correcting algorithms.

Example 3.6. The divisors of x3 − 1 ∈ F = GF (23) are 1, x+ 1, x2 + x+ 1, x3 − 1.
For g(x) = x+1 we have F [x]/(g(x)) = {(0), (1+x), (1+x2), (x+x2)} using the binary notation from the
polynomial notation we have the corresponding cyclic code is {(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)} [2].

4 Application to the Cryptography

Cryptography is the science of safe-guarding information by converting the original message into some-
thing different. Galois fields are the life of modern cryptography used in digital communication. Advance
Encryption Standard (AES) is one of the widely used cryptography standard developed by two Belgian
cryptographers Vincent Rijmen and Joan Daemen [7]. The AES is a computer security standard for cryp-
tography which is approved by the Federal Information Processing Standards Publications of USA which
became effective on May 26, 2002. “The AES algorithm is a symmetric block cipher that can encrypt
and decrypt digital information” [7]. Symmetric key cryptography is used to share information between
two parties where the two parties share a secret “key” and a public encryption algorithm [6]. The generic
algorithm of AES consists of smaller sub-algorithms namely “Sub-Bytes, Shift-Rows, Mix-Columns and
Add-Round-Key” [7].

The State

First the data is broken into blocks and each block is broken into smaller chunks of a size byte (16 bytes
for a block of size 128 bits). This block is then represented in a which consisting of bytes of the word.
This matrix is called the state. Mathematical operations are not applicable to the data directly so the
significance of this step is to make the data applicable for mathematical operations. For the 128-bit key
encryption the algorithm forms a 4 × 4 matrix with each entry of a size one byte. This matrix can afford
to evaluate a data of size 16 byte at a time [7].

Sub-Bytes

In this step, first each byte of the matrix is replaced with its multiplicative inverse if it has one. Then it
transforms each bytes using an invertible affine transformation, x 7→ Ax+ b [7].

Mathematical Preliminaries

Each byte in the state i.e each entry in the matrix, is interpreted as one of the 256 elements of a finite
field GF (28). Then the addition, multiplication operations are performed according to the respective field
operations of the field GF (28).

Shift-Rows

In this step entries of a row is shifted to scramble data. Row-n shifted to the left by n− 1 unit. Here,
1 − 1 = 0, so row-1 is left unchanged. 2 − 1 = 1, so row-2 is shifted to the left by 1 unit and row-3 by 2
unit and so on as shown below [7].

If A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 then A′ =


a11 a12 a13 a14
a22 a23 a24 a21
a33 a34 a31 a32
a44 a41 a42 a43

 is the matrix after Shit-Row.

Mix-Columns

In this step each column is transformed using a linear transformation, c 7→ Bc where c is a column of the
matrix obtained above. Since linear transformation is invertible this step is invertible. Note every step of
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this algorithm must be invertible to be able to decrypt the data [7].

Add-Round-Key

This is the step where the encrypted data gets uniqueness. Each user is assigned an ”unique key” and this
key is added to the matrix obtained from the last step [7].

Illustration
Let us encrypt the sentence ”Fun Cryptography”. This consists of exactly 16 characters.

1. First we write the ASCII representation of each character of the sentence as shown below. We do so
because the ASCII representation gives the binary representation of each character which has a size
of a byte. The ASCII representation of ”F” is 70 which is 01000110 in binary.

70 117 110 32
67 114 121 112
116 111 103 114
97 112 104 121

 =


01000110 01110110 01101110 00010000
01000011 01110010 01111001 01110000
01110100 01101111 01100111 01110010
01100001 01110000 01101000 01111001


2. After performing Sub-Bytes, Shift-Rows, Mix-Columns, we get the following matrix.

11100111 00011000 00100100 01110000
00101010 10101011 00111001 01100011
00010101 01100101 11110111 10100111
10101011 11110110 00000011 10100100

 =


231 24 36 112
42 171 57 99
21 101 247 167
171 246 3 164


3. We have omitted the Add-Round-Key step just for the sake of simplicity. The matrix obtained at

last in step-2 translates to something different from our original sentence.

4. The decryption process is applying the inverse of the encryption process [7].

5 Conclusion

The Galois theory that begun in the 19th century due to the french mathematician Évariste Galois is still
a relevant field of research today. Over the 200 years this theory has found its development as a linking
theory of the two main theories: Group theory and field theory. It has found its applications in both pure
and applied mathematics; where-ever “Field Theory” has anything to do with. Many concepts of Abstract
algebra, Algebraic number theory, Algebraic geometry, etc rely heavily on Galois theory because they are
developed on field extensions, and the computer science relies heavily on Galois field.
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