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Abstract: In this work, we investigate the logarithmic higher-order Kirchhoff-type equation with variable
exponents as follows

θtt +M
(∥∥∥P 1

2 θ
∥∥∥2)Pθ + |θt|p(x)−2

θt = |θ|q(x)−2
θ ln θ.

We proved that under suitable conditions on the initial data, a finite-time blow up result for solutions with
negative initial energy.
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1 Introduction

In this paper, we investigate the following problem:
θtt +M

(∥∥∥P 1
2 θ
∥∥∥2)Pθ + |θt|p(x)−2

θt = |θ|q(x)−2
θ ln θ, Ω× (0, T ) ,

θ (x, t) = ∂
∂v θ (x, t) = 0, ∂Ω× (0, T ) ,

θ (x, 0) = θ0 (x) , θt (x, 0) = θ1 (x) x ∈ Ω,

(1)

where P =(−∆)
m
, m ≥ 1 is a natural number. Ω ⊂ Rn (n ∈ N+) is a bounded domain with smooth

boundary ∂Ω and M (λ) = s1 + s2λ
γ and s1, s2 ≥ 0, γ ≥ 1. p(·) and q(·) are given measurable functions

on Ω, satisfying {
2 ≤ p1 ≤ p (x) ≤ p2 ≤ p∗,
2 ≤ q1 ≤ q (x) ≤ q2 ≤ q∗

(2)

here {
p1 = ess infx∈Ω p (x) , p2 = ess supx∈Ω p (x)
q1 = ess infx∈Ω q (x) , q2 = ess supx∈Ω q (x)

(3)

and {
2 < p∗ < ∞ if n ≤ 2m,
2 < p∗ < 2n

n−2m if n > 2m,
(4)

also satisfying the log-Hölder continuity condition:

|p (x)− p (y)| ≤ A

ln
∣∣∣ 1
x−y

∣∣∣ , (5)

for all x, y ∈ Ω with |x− y| < δ, 0 < δ < 1, A > 0.

In recent years, these problems appear in many modern physical and engineering models such as electro-
rheological fluids, fluids with temperature dependent viscocity, filtration processes through a porous media,
image processing and thermorheological fluids and others, which required modeling with non-standard
[3, 12]. Before going any further, some imporant works in the literature are reviewed.
Tebba et al. [11] investigated a nonlinear damped wave equation given by:

θtt −∆θ −∆θtt + a |θt|m(x)−2
θt = b |θ|p(x)−2

θ,
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under appropriate assumptions on the variable exponents, they demonstrated the existence of a unique
weak solution using the Faedo-Galerkin method. They also proved the finite time blow-up of solutions.

In the study by Ouaoua et al. [8], they investigated the following equation:

θtt +∆2θ −∆θ + |θt|m(x)−2
θt = |θ|r(x)−2

θ,

they demonstrated the local existence and also proved that the local solution is global.

In the study by Hamadouche [6], he investigated the following nonlinear Petrovsky equation:

θtt +∆2θ + a |θt|m(·)−2
θt = b |θ|p(·)−2

,

by utilizing the Faedo-Galerkin method, the author established the existence of a unique weak solution for
variable exponents m and p under suitable assumptions, and also obtained the blow-up result with negative
initial energy.

Antontsev et al. [2] studied the following wave equation

θtt +∆2θ −M
(
∥∇θ∥2

)
∆θ + |θt|p(x)−2

θt = |θ|q(x)−2
θ.

By virtue of the Faedo-Galerkin method, they proved the local existence of the solution.

Liao et al. [7] studied following equation

θtt +∆2θ −M
(
∥∇θ∥2

)
∆θ −∆θt + |θt|m(x)−2

θt = |θ|p(x)−2
θ, (6)

they studied blow-up will happen for arbitrarily high initial energy.

Antontsev et al. [1] considered the Petrovsky equation with strong damping term of the form

θtt +∆2θ −∆θt + |θt|p(x)−2
θt = |θ|q(x)−2

θ.

They proved the local weak solutions and global nonexistence.

Pişkin [9] proved the nonexistence of solution of the following equation

θtt −M
(
∥∇θ∥2

)
∆θ + |θt|p(x)−2

θt = |θ|q(x)−2
θ.

Rahmoune [10] studied the following wave equation

θtt −∆θ + |θt|m(x)−2
θt = |θ|p(x)−2

θ ln θ,

they proved the local existence and blow up.

Dinç et al. [5] investigated the following Kirchhoff-type equation with a variable exponent:

θtt −M
(
∥∇θ∥pp

)
∆pθ + |θt|r(x)−2

θt = |θ|q(x)−2
θ.

Under suitable conditions, they established an upper bound for the blow-up time.

Motivated by the above studies, we proved to blow up the variable-exponent high-order logarithmic
Kirchhoff-type equation.

This work is organized as follows. In the next part, we introduce preliminary details about variable expo-
nent Lebesgue and Sobolev spaces. Moreover, we introduce important lemmas and assumptions. In Part
3, we prove our results by demonstrating that there is a finite-time blow-up for initial data with negative
initial energy.
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2 Preliminaries

In this part, we introduce some Lemmas and Corollary for the proof of our result.

Lemma 2.0.1. [3, 4]. If p : Ω → [1,∞] is a measurable function θ on Ω and

2 < p1 ≤ p (x) ≤ p2 <
2n

n− 2
, n ≥ 3. (7)

Then, the embedding H1
0 (Ω) ↪→ Lp(·) (Ω) is continuous and compact.

From the above lemma and by applying the Sobolev embedding theorem, we can derive the following
corollary:

Corollary 1. If p : Ω → [1,∞] is a measurable function θ on Ω and we give the sufficient conditions for
p (x) and q (x)

2 < p1 ≤ p (x) ≤ p2 < q1 ≤ q (x) < q2 <
2n

n− 2m
(8)

Then, the embedding Hm
0 (Ω) ↪→ Lp(·) (Ω) is continuous and compact.

Lemma 2.0.2. The energy associated with the problem (1) given by (2) satisfies the

E′ (t) = −
∫
Ω

|θt|p(x) dx ≤ 0 (9)

and the inequality E (t) ≤ E (0) holds, where

E (0) =
1

2
∥θ1∥2 +

1

2

∥∥∥P 1
2 θ0

∥∥∥2 + 1

2 (γ + 1)

∥∥∥P 1
2 θ0

∥∥∥2(γ+1)

+

∫
Ω

1

q (x)
|θ0|q(x) ln |θ0| dx+

∫
Ω

1

q2 (x)
|θ0|q(x) dx. (10)

where

E (t) =
1

2
∥θt∥2 +

1

2

∥∥∥P 1
2 θ
∥∥∥2 + 1

2 (γ + 1)

∥∥∥P 1
2 θ
∥∥∥2(γ+1)

+

∫
Ω

1

q2 (x)
|θ|q(x) dx−

∫
Ω

|θ|q(x)

q (x)
ln |θ| dx. (11)

Proof. We multiply the equation of (1) by θt, and integrating over Ω using integrating by parts, we get

E′ (t) = −
∫
Ω

|θt|p(x) dx ≤ 0.

Lemma 2.0.3. [10]. Let the conditions of (7) be fulfilled and let θ be the solution of (1). Then,∫
Ω

|θ|q(x) dx ≥
∫
Ω2

|θ|q1 dx = ∥θ∥q1q1,Ω2
(12)

where Ω2 = {x ∈ Ω : |θ (x, t)| ≥ 1} .

Lemma 2.0.4. [10]. Under the assumptions stated in (8), the function H (t) provided above gives the
following estimated:

0 < H (0) ≤ H (t) ≤ |Ω|
q1e

+
Bs

(s− q2) q1e
∥∇θ∥s2 , t ≥ 0,
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where s is chosen sufficiently small such that{
q1 ≤ q2 < s < ∞, for n = 1, 2,
q1 ≤ q2 < s ≤ 2n

n−2 , for n ≥ 3,

and Bs is a positive constant of embedding H1
0 (Ω) in Ls (Ω) such that

∥u∥s ≤ Bs ∥∇θ∥2 , ∀θ ∈ H2
0 (Ω) .

Where, H (t) is defined in (13).

From the above lemma and by applying the Sobolev embedding theorem, we can derive the following
corollary:

Corollary 2. Under the assumptions stated in (8), the function H (t) provided above gives the following
estimated:

0 < H (0) ≤ H (t) ≤ |Ω|
q1e

+
Bs

(s− q2) q1e

∥∥∥P 1
2 θ
∥∥∥s
2
, t ≥ 0,

where s is chosen sufficiently small such that{
q1 ≤ q2 < s < ∞, for n ≤ 2m,
q1 ≤ q2 < s ≤ 2n

n−2m , for n ≥ 2m,

and Bs is a positive constant of embedding Hm
0 (Ω) in Ls (Ω) such that

∥u∥s ≤ Bs

∥∥∥P 1
2 θ
∥∥∥
2
, ∀θ ∈ Hm

0 (Ω) .

3 Blow Up

In this part, we state and prove our main result.

Theorem 3.1. Assume that (8) hold, and E (0) < 0. Then any solution of problem (1) blows up infinite
time.

Proof. Let

H (t) = −E (t) for t ≥ 0, (13)

since E (t) is absolutely continuous, hence H′ (t) ≥ 0 and

0 < H (0) ≤ H (t) ≤
∫
Ω

1

q (x)
|θ|q(x) ln |θ| dx.

We define

Φ (t) = H1−σ (t) + ε

∫
Ω

θθtdx, (14)

with σ > 0 is small enough to be chosen later and such that

0 < σ ≤ min

{
q1 − 2

2q1
,

q1 − p2
q1 (p2 − 1)

,
2 (q1 − p1)

s (p1 − 1) q1
,

2 (q1 − p1)

s (p2 − 1) q1

}
. (15)

Differentiation of (14), and using (1) we get

Φ′ (t) = (1− σ)H−σ (t)H′ (t) + ε ∥θt∥2 − ε
∥∥∥P 1

2 θ
∥∥∥2

−ε
∥∥∥P 1

2 θ
∥∥∥2(γ+1)

+ ε

∫
Ω

|θt|q(x) ln θdx− ε

∫
Ω

θ |θt|p(x)−2
θtdx. (16)
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Add and subtract ε (1− η) q1H (t) with 0 < η < q1−2
q1

on the righthand side of (16), to arrive at

Φ′ (t) ≥ (1− σ)H−σ (t)H′ (t) + ε (1− η) q1H (t) + ε

(
1 +

(1− η) q1
2

)
∥θt∥2

+ε

(
(1− η) q1

2
− 1

)∥∥∥P 1
2 θ
∥∥∥2 + ε

(
(1− η) q1
2 (γ + 1)

− 1

)∥∥∥P 1
2 θ
∥∥∥2(γ+1)

2

+εη

∫
Ω

|θ|q(x) ln θdx+ ε

(
(1− η) q1

q22

)∫
Ω

|θ|q(x) dx− ε

∫
Ω

θθt |θt|p(x)−2
dx

taking into account
1

q22

∫
Ω

|θ|q(x) dx <
1

q1

∫
Ω

|θt|q(x) ln θdx,

we get

Φ′ (t) ≥ (1− σ)H−σ (t)H′ (t) + ε (1− η) q1H (t) + ε

(
1 +

(1− η) q1
2

)
∥θt∥2

+ε

(
(1− η) q1

2
− 1

)∥∥∥P 1
2 θ
∥∥∥2 + ε

(
(1− η) q1
2 (γ + 1)

− 1

)∥∥∥P 1
2 θ
∥∥∥2(γ+1)

2

+ε
q1
q22

∫
Ω

|θ|q(x) dx− ε

∫
Ω

θθt |θt|p(x)−2
dx. (17)

Combining (12), (17) result in

Φ′ (t) ≥ (1− σ)H−σ (t)H′ (t) + εβ

[
H (t) + ∥θt∥2 +

∥∥∥P 1
2 θ
∥∥∥2 + ∥∥∥P 1

2 θ
∥∥∥2(γ+1)

2
+

∫
Ω

|θ|q(x) dx
]

−ε

∫
Ω

θθt |θt|p(x)−2
dx

≥ (1− σ)H−σ (t)H′ (t) + εβ

[
H (t) + ∥θt∥2 +

∥∥∥P 1
2 θ
∥∥∥2 + ∥∥∥P 1

2 θ
∥∥∥2(γ+1)

2
+ ∥θ∥q1q1,Ω2

]
−ε

∫
Ω

θθt |θt|p(x)−2
dx, (18)

where

β = min

{
(1− η) q1,

(
1 +

(1− η) q1
2

)
,

(
(1− η) q1

2
− 1

)
,

(
(1− η) q1
2 (γ + 1)

− 1

)
,
q1
q22

}
.

Now, by applying Young’s inequality, we can make an estimate for the last term in (16) as demonstrated
below ∫

Ω

θθt |θt|p(x)−2
dx ≤ 1

p1

∫
Ω

γp(x) |θ|p(x) dx

+
p2 − 1

p2

∫
Ω

γ− p(x)
p(x)−1 |θt|p(x) dx, (∀γ > 0) . (19)

As a result, by taking γ such that

γ− p(x)
p(x)−1 = kH−σ (t) k > 0,

substituting the statement into equation (19) with a sufficiently large k to be specified later, we derive the
following inequality: ∫

Ω

θ |θt|p(x)−1
dx ≤ 1

p1

∫
Ω

k1−p(x)Hσ(p(x)−1) (t) |θ|p(x) dx

+
p2 − 1

p2
kH−σ (t)H′ (t) , ∀γ > 0. (20)
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The result of joining (18) with (20)

Φ′ (t) ≥
[
(1− σ)− ε

p2 − 1

p2
k

]
H−σ (t)H′ (t)

+εβ

[
H (t) + ∥θt∥2 +

∥∥∥P 1
2 θ
∥∥∥2 + ∥∥∥P 1

2 θ
∥∥∥2(γ+1)

2
+ ∥θ∥q1q1,Ω2

]
−ε

k1−p1

p1
Hσ(p2−1) (t)

∫
Ω

|θ|p(x) dx. (21)

Using Corollary 2, we obtain

Hσ(p2−1) (t)

∫
Ω

|θ|p(x) dx

≤ 2σ(p2−1)−1C

(
|Ω|
q1e

)σ(p2−1)((
∥θ∥q1q1,Ω2

) p1
q1

+
(
∥θ∥q1q1,Ω2

) p1
q1

)
+2σ(p2−1)−1C

(Bs)
sσ(p2−1)

(s− q2) eq1

∥∥∥P 1
2 θ
∥∥∥sσ(p2−1)

2

(
∥θ∥p1

q1,Ω2
+ ∥θ∥p1

q1,Ω2

)
. (22)

We will estimate the terms to the right of (22) using Young’s inequality, we get

∥∥∥P 1
2 θ
∥∥∥sσ(p2−1)

2
∥θ∥p1

q1,Ω2
≤ p1

q1
∥θ∥q1q1,Ω2

+ C
q1 − p1

q1

∥∥∥P 1
2 θ
∥∥∥ sσ(p2−1)q1

q1−p1

2

=
p1
q1

∥θ∥q1q1,Ω2
+ C

q1 − p1
q1

(∥∥∥P 1
2 θ
∥∥∥2) sσ(p2−1)q1

2(q1−p1)

,

similarly ∥∥∥P 1
2 θ
∥∥∥sσ(p2−1)

2
∥θ∥p2

q1,Ω2
≤ p2

q1
∥θ∥q1q1,Ω2

+ C
q1 − p2

q1

∥∥∥P 1
2 θ
∥∥∥ sσ(p2−1)q1

q1−p1

2
.

Using the following inequality

az ≤ a+ 1 ≤
(
1 +

1

b

)
(a+ b) ; ∀a ≥ 0, 0 < z < 1, b ≥ 0, (23)

and condition (8) with a = ∥θ∥q1q1,Ω2
, c1 = 1 + 1

H(0) , b = H (0) and z = p1

q1
(z = p2

q1
), we get

(
∥θ∥q1q1,Ω2

) p1
q1

+
(
∥θ∥q1q1,Ω2

) p2
q1 ≤ 2c1

(
∥θ∥q1q1,Ω2

+H (0)
)

≤ 2c1

(
∥θ∥q1q1,Ω2

+H (t)
)

and condition (15) with a =
∥∥∥P 1

2 θ
∥∥∥2
2
, c2 = 1 + 1

H(0) , b = H (0) and z = sσ(p2−1)q1
2(q1−p1)

, we have

(∥∥∥P 1
2 θ
∥∥∥2
2

) sσ(p2−1)q1
2(q1−p1)

≤ c2

(∥∥∥P 1
2 θ
∥∥∥2 +H (0)

)
≤ c2

(∥∥∥P 1
2 θ
∥∥∥2 +H (t)

)

also, a =
∥∥∥P 1

2 θ
∥∥∥2
2
, c3 = 1 + 1

H(0) , b = H (0) and z = sσ(p2−1)q1
2(q1−p2)

, we obtain

(∥∥∥P 1
2 θ
∥∥∥2
2

) sσ(p2−1)q1
2(q1−p2)

≤ c3

(∥∥∥P 1
2 θ
∥∥∥2 +H (t)

)
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and so, (22)

Hσ(p2−1) (t)

∫
Ω

|θ|p(x) dx ≤ C

(
∥θ∥q1q1,Ω2

+H (t) +
∥∥∥P 1

2 θ
∥∥∥2) , ∀t ∈ [0, T ] , (24)

where C = C (Ω, e, a, p1,2, q1,2) > 0. Combining (21) and (24), we get

Φ′ (t) ≥
[
(1− σ)− ε

p2 − 1

p2
k

]
H−σ (t)H′ (t)

+ε

[
β − kp2−1

p2
C

] [
H (t) + ∥θt∥2 +

∥∥∥P 1
2 θ
∥∥∥2 + ∥∥∥P 1

2 θ
∥∥∥2(γ+1)

2
+ ∥θ∥q1q1,Ω2

]
. (25)

At this point we pick γ = β − kp2−1

p2
C ≥ 0, (it is the case when k >

(
βp1

C

) 1
1−p1

. Once k is fixed we pick

ε > 0 sufficient small so that

(1− σ)− ε
p2 − 1

p2
k ≥ 0

and

Φ (0) = H1−σ (0) + ε

∫
Ω

θ0 (x) θ1 (x) dx > 0.

Hence (25) takes the form

Φ′ (t) ≥ γ

[
H (t) + ∥θt∥2 +

∥∥∥P 1
2 θ
∥∥∥2 + ∥∥∥P 1

2 θ
∥∥∥2(γ+1)

2
+ ∥θ∥q1q1,Ω2

]
. (26)

Therefore, we have

Φ (t) ≥ Φ (0) > 0, for all t ≥ 0

On the other hand from (14),

Φ
1

1−σ (t) ≤ 2
1

(1−σ)

(
H (t) +

∣∣∣∣∫
Ω

θθtdx

∣∣∣∣ 1
(1−σ)

)
(27)

by utilizing Hölder’s inequality, it becomes∣∣∣∣∫
Ω

θθtdx

∣∣∣∣ 1
(1−σ)

≤ C ∥θ∥q1 ∥θt∥2

≤ C ∥θ∥q1,Ω ∥θt∥2 .

Again, algebraic inequality (23), with a = ∥θ∥q1q1,Ω2
, c = 1 + 1

H(0) , b = H (0) and 0 < z = 2p1

(1−2α)q1
≤ 1 (see

15), gives (
∥θ∥q1q1,Ω2

) 2
(1−2σ)q1 ≤ C

(
∥θ∥q1q1,Ω2

+H (t)
)
.

Thus, Young’s inequality gives

∣∣∣∣∫
Ω

θθtdx

∣∣∣∣
1

(1−σ)

≤ C

[
∥θ∥

2(1−σ)
1−2σ

q1,Ω2
+ ∥θt∥2(1−σ)

2

] 1
(1−σ)

,

≤ C

[(
∥θ∥q1q1,Ω2

) 2
(1−2σ)q1

+ ∥θt∥22

]
,

≤ C
[
∥θ∥q1q1,Ω2

+H (t) + ∥θt∥22
]
, for all t ≥ 0,

joining it with (26) and (27) yields

Φ′ (t) ≥ ζΦ
1

1−σ (t) (28)
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where ζ = ζ (ε, γ, C) > 0. By taking a simple integration of (28) over (0, t) we deduce that

Φ
σ

1−σ (t) ≥ 1

Φ
σ

1−σ (0)− σ
1−σ ζt

. (29)

Consequently, Φ (t) blows up in a finite time T ∗

T ∗ ≤ 1− σ

ζσΦ
σ

1−σ (0)
.
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