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Abstract: The Gaussian integral, denoted as ffooo e~ dx, plays a significant role in mathematical litera-
ture. In this paper, we explore a family of integrals related to Gaussian functions. Specifically, we introduce
generalized Gaussian integrals, represented as fooo e~*"dx, and two distinct types of Gaussian-like integrals:
1. Type I: fooo e=f@%dx, and 2. Type II: fooo e~ f(z)dz,

where f(x) is a continuous function. The study of integrals related to Gaussian-like functions has been
explored in the work of Huang [8] and Dominy [7]. Our approach to evaluating these integrals relies on
specialized functions, including error functions, complementary error functions, imaginary error functions,
and Basel functions.
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1 Introduction

The Gaussian integral, which is central to various fields of mathematical analysis, probability theory,
and physical sciences, finds its historical roots in the work of Carl Friedrich Gauss. In Theoria Motus
Corporum Coelestium in Sectionibus Conicis Solem Ambientium (1809), Gauss introduced the least squares
method and the concept of a normal distribution, setting the foundation for the Gaussian function’s later
applications in probability and statistics [I]. Gauss extended his analysis of observational errors in Theoria
Combinationis Observationum Erroribus Minimis Obnoxiae (1823), where he mathematically derived a
model of error distribution in empirical data [2]. The role of standard normal distribution function

fz) =

in probability and statistics can be found in the work of Laplace [3] and Stiger [5]. The normal distribution
has been known to millions as a bell curve, bell-shaped curve or Gaussian distribution. It is not at
all obvious at first that integral of the standard normal distribution function over real numbers is 1.
Proofs of the integral of similar function ffooo e dy = /7 using techniques like polar transformations,
differentiation under integral sign, gamma function can be found in the paper of Cornard [6]. Solutions of
Generalised Gaussian Integral of type II using dimensional analysis can be found in the work of Dominy
[7]. Huang also gave several interesting proofs of various Gaussian Like Integrals of type-II using real and
complex methods [§] Even though a lot of Type II generalizations of the form fooo e~ f(x)dx have

been evaluated in the mathematical literature, there is inadequacy of Type I generalization fooo e~ f @4y
for various functions f(x) . This study aims to fill the gap in evaluation of Gaussian Like Integrals of
Type-II. These evaluations are indispensable in numerous fields, as Gaussian integrals are fundamental in
stochastic methods [9], Machine Learning [I0], and in statistical mechanics for partition functions [I1].
The importance of Gaussian / Normal distribution in hypothesis testing, estimation, and the central limit
theorem, solidifying its role in both theoretical and applied statistics is also examined in the paper of R.A.
Fisher [4].

1Huang’s paper motivated us to evaluate a slightly different version of Gaussian Integrals.
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In this study of Gaussian Like Integrals, error function er f(z) = % for e~ dt and its counterparts, namely

complementary error function er fc(z) = % = e~t*dt and imaginary error function er fi(z) = % o e’ dt
have been carefully manipulated to present various fruitful results. We organize the work into different
sections. In section 2, we evaluate Generalized Gaussian Integrals. Several Gaussian Like Integrals of type-I
and type-1I have been evaluated in section 3 and section 4 respectively. In section 5, we highlight a series
of miscellaneous integrals. As an additional check, all the formulas have been verified from Wolfram Alpha.

2 Generalized Gaussian Integral

This section contains a number of generalizations associated with the well known Gaussian integral. We
present our main results in terms of error functions [I4] and Euler-Mascheroni constant [I8]. First, we
mention some definitions, lemmas, and then we construct our main results.

Definition 1. From [10], we define I'(x) for x > 0 as following:

I'(x) = /OOO e " dt (1)

Using integration by parts, we see that for positive integer z, I'(z) = (x — 1)!
Lemma 2.0.1. For R(z) > 0, the Laurent series expansion of Gamma function is

D) =1 — 7+ 507+ T)e = 20+ -+ 26(3)2 + 0 2

where v represents the Euler-Mascheroni constant.
A proof for this series can be found on [12].

Lemma 2.0.2. For R(z) >0, as n € N tends to infinity, we have:

r(z)~n-n 3)

where v is FEuler-Mascheroni constant [18] and ~ denotes asymptotic equivalence.

Proof. Substituting z = % and letting n tend to infinity, we get the result.

To verify this, using wolfram alpha, we get

I'(3)~ 27689 , I'(1) ~ 3.6256 , I'(}) ~ 4.5908 ,

These approximations are reasonably close to the values obtained using with v = 0.5772. The accuracy
of the approximation improves as n becomes larger. O

Theorem 2.1. Forn >0,

| eran= g~ a0 (1)

n n

Proof. Making an u-substitution v = 2",

/ e ¥ dr = 7/ ety 1y L9, @, 1 (=)
0 0

n n n

Applying this general result, we obtain the following values:
For n=2, we get iI'(1) = X [6]

For n=1, we get

We do not have a closed form for n > 2. However, we can use the asymptotic approximation for 1"(%) from
(3) considering n is large. This approximation validates the claim in . O]
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3 Gaussian Like Integral of Type-I

In this section, we prove various results involving integrals in the form of fooo e=f@*dz. The limits of
integration have been modified in some cases according to the domain of a function. Most of the results
are expressed in terms of the error functions: erf(x), erfe(x), and erfi(xz). We begin by providing clear
definitions for these error functions, establishing relevant lemmas, and then proceeding to serve our main
results.

In the existing literature, the definition of error functions has sometimes been ambiguous due to the inclusion
or omission of @ depending on the author’s perspective [2I]. To make the following clarity, we adopt the
following definitions:

Definition 2. For a complex number x,

/37 e’ dt = gerfi(x) (7)
0

We use these definitions without referencing them in the later sections.

We present some properties of error functions that will be helpful during the evaluation of the Gaussian-like
Integrals.

Lemma 3.0.1. For a complex number z,
erf(ix) = ierfi(x) (8)
erf(x)+erfe(z)=1 (9)
Proof. _
erf(ix) = 2 /“’ et ar =12 2 /l’ eidt = er fi(x)
VT Jo VT Jo
which proves ().

2 [T 2 /00 2 2 /°° e 2
erf(z)+erfeler) =— et dt+ — e dt = — e dt = —= x
@ +erfe® =72 7 s 77 Jo 7
which proves @D O

Lemma 3.0.2. For a complex number z,

erf(—xz) = —erf(x) (10)
erfi(—zx) = —erfi(x) (11)
erfe(—z) =2 —erfc(x) (12)

Proof.
2 - - 2 v
erf(—z) = ﬁ/o e~ dr =124 7 s et = —erf(x)

which proves lemma . Proof of lemma is similar. To prove lemma , we use lemma and
lemma @

erfe(—x) Lrom &, (2] 1—erf(—x) LromEH, 4 erf(x) 4>me@ 2 —erfe(x)
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Lemma 3.0.3.

erf(oo) = 1;erf(0) = 0;erf(—o0) = —1

(13)
erfe(0) = 1yerfe(oo) = 0;er fe(—oo) =2 (14)
erfi(0) =0 (15)

Proof.

ot 2 VT
erf (oo \/>/ dt = T T—Ierf

which proves lemmas in .

\/>/ e dt = 0; erf(—oo) = —erf(o0) = —

f ﬁx7:1;erfc(oo):—

erfe(0 -2 VT \577_ /O:O e~ dt = 0; erfe(—o0) = 2—erfe(oco) =2-0=2

which proves lemmas in .

0
erfi(0) = \/27?/0 e“dt =0

O
Theorem 3.1.

which proves lemma in .

/ e @’ gy = Yeu/m
0
Proof.

/ e~ @7 gy —W / e e da :/ e~ (@=3)+ig
0

1 (z—3)=z & g2 4
r —2— Ve e " dr = Ve/m

O
Theorem 3.2.
/OO e W@ gy = Ve lg\/% + e - Merf (—1)1 (17)
0 4 2 4 2
where W(z) is Lambert W function, also known as the product logarithm function
Proof.

/ W@ gy W2, / e " (z + 1)d = / @b+
0 0

_\f[e — / =)

\f[ e N Ny )]

O

Now, let’s consider more interesting functions for f(z), including trigonometric, inverse trigonometric, and

inverse hyperbolic functions. For trigonometric functions, we restrict the domain of integration from 0 to
s
5.

Theorem 3.3.

/2 e~ tan* (@) gy = %erfc( ) (18)
0

61



Journal of Nepal Mathematical Society (JNMS), Vol. 7, Issue 2 (2024); P. Pant et al.

Proof.

ki foe) e ) (z +1
/2 o tan’ (@) g, ten®) 2w / c dz = e/ ° / / e~ @D Gty
0 o 14 a2 o 1+ :r2

Using Fubini’s theorem to switch the order of integration

o0 o0 o0 o0 o0 1 o0
e/ / e~ @Dt gt — e/ e_t/ e~ tdydt = e/ e_t\/?dt = eﬁ/ et 2t
1 Jo 1 0 1 2Vt 2 &

ef/ e—ti—t g 2 \f/ it = ey/T x £67“f0( 1) = gerfc( )

Theorem 3.4. .
B
/ e~ ot (@) 1o — %erfc(l) (19)
0

We establish a lemma before dealing with the theorem.

/abf(x)da::/abf(a—i—b—x)dx (20)

b a . b
/ f(fE)diC rz—a+b—z _/ f(a +b— .%')d(E Reflection Property / f(a +h— x)d{l?
a b a

Lemma 3.4.1.

Proof.

O
Now, we are ready for the theorem .
Proof.
/ * e cor(@) gy, PanED, / F et (Foa) gp — / Tt @y 2B, e per)
0 0 0
O
Theorem 3.5. .
2 2 ™
/ e 5 @ dr = —erfe(1) (21)
0 2
Proof.
/5 e secZ(:E)dx sec?(z)=1+tan’(z) /E e—l—tu,n2(a:)dx _ 1/5 e—tan2(ac)d$ : Ee fC(l)
0 0 € Jo 2
O
Theorem 3.6. .
2 2 ™
/ e” @ dr = —erfe(l) (22)
0 2
Proof.
/E em e (@) gy /E em e (5-2) gy — /5 e’ (@) gy : gerfC(l)
0 0 0
O
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Theorem 3.7.

™

2 ; 1
/02 o= s (@) gy — 267%10(5) (23)
where I,(z) is the modified Bessel function of first kind.

Before we begin dealing with theorem , we cite the definition of the modified Bessel function of first
kind from [I3].

Definition 3. For integer n and Re(z) > 0,

I.(z) = /0 e cos(nh) do (24)

1
T
where I,,(z) is the modified Bessel function of first kind.

Now we are ready for the theorem (23).

Proof.

3 _ain2 1—cos(2z)=2sin?(z 2 _ 1 cos(2z) 2x— 1 1 T 1
/ e~ S (@) gy (2) (=) / e 2e 2 dr 5 e e203(®) gy
0 0 0

6_% / 6%008(55) COS(O-(E)dx = ge_%jo (
0

DN =

Theorem 3.8. .
2 2 T 1 1
oo @y = —e72 0 | = 25
/0 e x 26 0 (2> (25)

where I,(z) is the modified Bessel function of first kind.

Proof.
/E e—cosz(z)dx Eqn. /5 6_ (:082(%—17)dm — /E e—sinz(m)dx Eqn.}z ge_%lo(%)
0 0 0

O

Next, we take f(z) as inverse trigonometric functions. For inverse trigonometric functions, we restrict the
domain of integration from 0 to 1.

Theorem 3.9.

1 _i . . .’]T .71_
/0 e aresin®(z) g — ﬁ% [erfc(;) + erfc(—%) +i (erfi(l — Z—) - erfi(; + %) + 22)] (26)

2 2
Proof.
! in” r—rsin(x z p uler’s Formula [1D z i —iw
/ gmarcsin® (@) g, 2Sm(@), / e~ cos(x)dy et s Forml Lol / e*«*(i)dz
0 0 0 2
1% -1 [3 . ,
= (e—(m2_m) + e_(m2+m)) dp = € 4 (e_(m_%)z . e_(“'%)Z) de
2Jo 2 Jo
et . i

=Y (G- et g e ) —erns ()
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Using er f(iz) = ier fi(z), er f(—z) = —erf(z) and erfc(z) = 1 — er f(z) from (8), (9) and (T10),

3 5)+erfol=3) +erfe(3)-2)

= \/7?:72 (ierfi(; + %T) + der fi(

Y i i 1 ir 7
= [erfc(z) + erfc(fi) +i (erfz(2 - 5) — erfz(§ + 5) + 22)]

Theorem 3.10.
1 _1 . .
1 1 1
/ gmarecost (@) g, _ VT [erfi(Q -2+ erfi(s + %) - 2erfi(2)] (27)
0

4 2

Proof.

i —ix
— €

1 Bl ! 2
/ e—arccosz(m)dx z—rcos(z) /2 6_12 Sln(x)dx Euler’s Formula [19)] /2 e_mz(%)dx
0 0 0 '

_L1 7/ (6= — = in)) g = et /5 G P
0 0

Using er f(iz) = ier fi(z), er f(—z) = —er f(x) from and (10),

CYme i 1 dm. 1 im0 ]
= (—zerfz(2 + ?) — Z€7‘f@(§ — 5) + zerfz(i) + zerfz(2)>
= —\/%Z_Z (erfi(; + %) + erfi(% — %) - Qerfi(;)>

Next, we take f(x) as inverse hyperbolic functions. For inverse hyperbolic functions, we let the domain of

integration go from 0 to oo without any restriction.

Theorem 3.11.
/ 67arcsinh2($)dx — ﬁe% (28)
0 2
Proof.
oo . z—sinh(x ° cosh(z)= 5 (17 = ’ -
/ e—aresinh®(x) g, —sinh(z) / e~ cosh(z)dx " / 6712(i
0 arcsinh(z)=ln(z+v1+z2)[12] Jo 0 2

oo 1 oo
- 1/ (== 4 e~ 40)) i = ﬁ/ ("8 e+
2 Jo 2 Jo

L (st prensios ) |7 = G (0000 s+ ers ) 7
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Theorem 3.12.

o oS ) 1 1 ) 1 )
/0 e—arccosh?(@) g, \{fez {67“f(2 - %) + erf(§ + Z;T)} (29)
Proof.
/Oo e_m.ccosh2($)dx x—scosh(z) /OO e_mz sinh(z)dz sinh(z)=<"="[17] /OO 6_3162(6Jc —e " \dz
0 arccosh(.’r):ln(m—i—x/IZ—1)[12] % % 2

oo 1 0o
_ %/ (ef(aﬂfac) _ ef(m?‘er)) dr — %/ (ef(acf%)2 _ 67(I+%)2) dx

et
(-t

8

- \/T‘l‘ <erf(x - %) —erf(z+ ;))

i1
2 2

)—ers( +3))

w‘;

Using ([0) /Ted 1 ir ir 1
1 (erf(2 2)+erf(2+2)

4 Gaussian Like Integral of Type-I1

In this section, we prove various results involving integrals in the form of fooo e~ f(x)dz. Most of the results
are presented in terms of gamma function, erf(x), erfi(x) and erfc(z). Using the Lemmas presented in
the previous section, we are going to construct our main results.

Theorem 4.1.
> 2 1. n+1
T a"dy = =T 30
| etende = (i) (30)
Proof.
© 225 1 > n— sin 1 1
/ e~ andy L2 et T de L s@ T nt
0 2 Jo 2 2
O
Theorem 4.2.

/ e In(z)dz = _§ (v +In(4)) (31)
0

where v s euler-mascheroni constant.

Proof.

o0 1:2 - 1 o] 1 1 1 [e'e) .
/ e_len(x)dx =5 */ e’ hl(x%)x_éda: = 7/ e * ln(a?)xé_lda:.
0 2 0 4 0

But we have I'(n) = [;° e~*2"~'dx from [16]. So, I"(n) = [;* e~*2" ! In(z)dx. Thus required integral is
117(3). From [13], we have I"(z) = I'(z)¥(z). So, the result is 1T'(3)9(3). Again, from [20], we have
I'(3) = /7 and ¥(3) = (—y — 2In(2)). Thus, the result —%('y + 21n(2)) is proved.

O
Next, we take f(z) as trigonometric functions without restricting the domain of integration.
Theorem 4.3.
oo
™
/ e_rZCos(x)dx = %6_% (32)
0
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) oo i
2 Euler’s Formula [L9)] _z2,€
e cos(x)dx e
0

] +efi:c
(————)dz
O 2

L% (a2 mia) | P ria) CE T (a4 o

_ - (69: zw+ez Zm)dl‘* (6932 +6$2)d$€
2 Jo 2 Jo
1 . .
mTe 4 1 (] o
From and (13)), we have er f(—z) = —er f(z) and er f(c0) =1
\/77'6_i
4

Theorem 4.4

(11 ers) —ers(3)) = Y2 (2 ensh) —ens))

/ e sin(z)dz
0
Proof.

1
Tﬂ-e_%erfi(i)

5

3 _efix
i
:l/oo (i) — e .
% J,

¥ e (IJFi)Q) dx
ek i ; ’oo
=0 erf(x 2) erf(m—i—Q) .
From (8),(10) and (13)), we have er f(iz) = ier fi(z), erf(—z) =
\/7?6_%
41

—erf(z) and erf(

o0) =1

<1 -1- eff(—%) + erf(;)) fe Z

X 2267“]%(;) \/>€ :

erfi
fi(3)
Next, we take f(x) as hyperbolic functions without restricting the domain of integration
Theorem 4.5.

oo
/ e_‘”Qcosh(m)d = ﬁe%
O 2
Proof.
oo )=l te™® +e 17 oo xT T
/ —a cosh(x)dx cosh(=) ~7) / e 2(76 te )dx
0 0 2
1 [ 1 oo
7/ e~ (@ =a) | o~ ”)) de = < (e*(””*%)2 +e*(w+%)2> dz
2 Jo 2 Jo
B et

0

1 1 00
1 (erf(x - 5) +erf(r+ 2)) ’
From and , we have erf(-x)=-erf(x) and er f(c0)
Jei
4

(1+1-ers-) - erf3))

B JTed
4

R
PN

(2—&—67‘]“(;) —erf(;)) _

[\

66




An Analysis of the Generalized Gaussian Integrals and Gaussian Like Integrals of Type I and II

Theorem 4.6.
o 1 1
/ e_wzsinh(x)dx = ﬁezerf(f) (35)
o 2 2
Proof.
> sinh(z)= 17 > T —e 7T
/ e_“ﬂsinh(x)dx b= 7] / e‘”%i)dgx
0 0 2

/OO (ef(x%m _ 64952“)) de— [T (ef@:f%f _ 67@%)2) Iz
0 2 0

B \/7?6_%
T4

N —

1 1 o
(erf(x — 5) —erf(z+ 2)) ‘0
From and (13), we have erf(-x)=-erf(x) and er f(oco0)=1

\/%Z_i (1 11— erf(—%) +e7“f(;)) - ﬁz_i

< 2erf(5) = YT Lerf (1)

O

To make this more interesting, next, we take f(z) as error functions themselves letting the domain of
integration from 0 to oco.

Theorem 4.7.

/00 e_zzerf(as)dm = ? (36)
0

Proof.

e Tom 2 & r ,L 2 > 1
/ e_””2erf(m)da: —/ e“’”z/ et dtde = —/ 6_932/ e~ @ pdtdy
0 VT Jo 0 v Jo 0

e 1 1 00
_ l / / eiaj2(1+t2)1’dtdl’ Using Fubini's theorem i / / €7w2(1+t2)2xd(£dt
v Jo Jo VT Jo Jo

‘1 1 T T

T VT4 4

arctan(t)

- = L Sl 7 e

Theorem 4.8.
/ efzzerfc(x)dx = ? (37)
0

Proof.

o0 2 From 2 /OO 2 /OO —t2 / / —(Tt)
e T erfe(r)de ——— — e e " dtdx —> xdtdx

2 /oo /OO —z2(141?) Using Fubini's theorem 1 /OO /OO —22(14-42
= — e ® xdtdz — e )90 dudt
vr o vr i Jo

NG

JT T4 4

00 1
arctan(t) ’

1+t) o0 1
== ——dt = —
\F/ —(1+12) \/E/l 142 VT
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5 Miscellaneous Results on other Generalizations of Gaussian In-
tegrals

For the sake of completeness, we also evaluate another kind of generalized Gaussian Integral in this paper.

Remarks: For a >0 2
b“—4ac
s a b
/ e—(a12+b$+6) dl‘ _ e ¢ erfc <ﬁ> (38)
0 \/a 2a

Proof.
/ e—(am2+bm+c>dx:/ e—[a<(w+%)2+§—%ﬂdx:/ pmol(o+ Pty
0 0 0

b2 —dac o)

b2 _4ac o0 _ b2 (:EJr%)*)I b2 _4ac o° 2 \/Ez—)x € 4a 2
=e 4 / eal@ted) gy 220 T ot m e " dx — NG e " dx
b a bva
0 2a 2aa

2a

2 _4ac b2 —4ac
\/EebT 00 J/Te da bv/a
=@ = g e,
2a

)

Substituting b = c¢ =0 in gives a well-known special case.

9] R 0
/0 e~ dx = \2{1-/65 erfe(0) = ;\/Z (39)

6 Conclusion

In this paper, we have systematically analyzed and evaluated several generalized Gaussian integrals and
Gaussian-like integrals of types I and II. By leveraging specialized functions such as the error function,
complementary error function, and imaginary error function, we derived a variety of useful results that
extend the classical Gaussian integral’s scope. These integrals demonstrate applications in diverse fields,
including probability theory, statistical mechanics, and quantum mechanics, thereby emphasizing their pro-
found mathematical and practical significance.

Our study also highlighted the versatility of Gaussian-related integrals when generalized to involve con-
tinuous functions or higher-order powers. The mathematical techniques employed here, including real and
complex analysis, are crucial for further exploration of these integrals and their applications.

We encourage interested readers to explore these results further and investigate additional integrals. For
instance, one might consider cases where the function is gamma function f(z) = I'(x), digamma function
f(z) = ¢¥(x), zeta function f(x) = ((z), poly-logarithm function f(x) = Lis(xz) or any other special
functions within the Gaussian-Like integrals.The results presented here serve as a foundation for such
endeavors, offering a robust framework for both theoretical investigations and practical implementations.
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