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Abstract: In this paper, we have to find out the lower bound and upper bound of some class codes in the
finite ring R = Z2 + uZ2 + u2Z2, where u3 = 0, with Gray Mapping R → Z2Z4 with respect to different
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1 Introduction

In the last decade, there have been many researchers doing research on code over finite rings. In [3], the
author was the first to develop the coding theory of finite commutative non-chain rings. Z2k is a special
type of ring and 2k is the ring of integers modulo 2k, k is a positive integer, worked very much interest in
codes over finite rings in recent years.

In[2, 4, 5, 6, 7], the authors widely study the codes over Z4 and get a good binary linear code and non-linear
code over the finite ring Z4 via the gray map.

In [13], the author studied the covering radius of binary linear codes over finite fields and the covering
radius is one of the important geometric parameters of codes. Recently, the covering radius of codes over
finite chain rings has been studied. In 1999, Sole et al gave many upper and lower bounds on the covering
radius of a code over Z4 with different distances.

In [10], the author studied the covering radius of codes over Z2 + uZ2 with u2 = 0. The author gave
some lower bound and upper bound on the covering radius of codes over Z4 and Z2 + uZ2 [8, 9, 11].
The Generalized Lee weight and Lee weight are the element x ∈ R is analogous to the definition of the
Generalized Lee weight and Lee weight of the elements of the ring Z8 [12, 16, 17].

In continuation of the above work. I have given some results on the covering radius of codes in R =
Z2 + uZ2 + u2Z2 being the finite ring. Consider the elements of ring {0, 1, u, v, u2, v2, uv, v3}, where u3 =
0, v = 1 + u, u2 = 2u, v2 = 1 + u2, uv = u + u2, v3 = 1 + u + u2 and Z2Z4 = {00, 01, 02, 03, 10, 11, 12, 13}.
That is, Gray Map R → Z2Z4.

2 Preliminaries

Let C be a linear code of length n in R is an additive subgroup of Rn. An element of C is called a codeword
of C. A matrix whose rows are the basis elements of a linear code C is said to be generator matrix of C.
The Hamming weight of C is wtH(C) = {wt(c)|c ∈ C and c ̸= 0}. Let c1, c2 ∈ C and c1 − c2 ∈ C. The
Hamming distance of C is dH(C) = {d(c1, c2)|c1, c2 ∈ C and c1 ̸= c2} = {wt(c1 − c2)|c1, c2 ∈ C and c1 ̸=
c2} = {wt(c)|c ∈ C and c ̸= 0} = wtH(C).

Any code R is permutation equivalent to a code C with generator matrix of the form

G =

 Ik0 A01 A02 A03

0 uIk1
uA12 uA13

0 0 u2Ik2
u2A23


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where Aij are binary matrices for i > 0. A code with a generator matrix in this form is of type {k0, k1, k2}
and has 8k04k12k2 vectors [18].

The Lee weights of the elements 0, {1, v, v2, v3}, {u, uv}, u2 of R are defined by 0, 1, 2, 22 [17]. In[1], the
Generalized Lee weight of the elements x ∈ R are given

wtGL(x) =

 0 if x = 0
2 if x ̸= u2

4 if x = u2

and the Chinese Euclidean Weight of the elements x ∈ R are given

wtCE(x) =


0 if x = 0,
1 if x = 1, v3,
2 if x = u, uv,
3 if x = v, v2,
4 if x = u2.

in [15].
The Lee, Generalized Lee and Chinese Euclidean distances between the codewords c1 and c2 ∈ Rn are
defined as

dL(c1, c2) = wtL(c1 − c2),

dGL(c1, c2) = wtGL(c1 − c2)

and
dCE(c1, c2) = wtCE(c1 − c2).

The minimum Hamming weight of C is wtH(C) = min{wt(c)|c ∈ C and c ̸= 0}. Similarly, the minimum
Lee, minimum Generalized Lee and minimum Chinese Euclidean weights of C is the smallest non-zero
codeword of a code C.

The Gray map ϕ : R → Z2Z4 is defined by ϕ(0) = (0, 0), ϕ(1) = (1, 1), ϕ(u) = (0, 2), ϕ(v) = (0, 3), ϕ(u2) =
(1, 0), ϕ(v2) = (0, 1), ϕ(uv) = (1, 2) and ϕ(v3) = (1, 3). In general, a linear gray map ϕ from Rn → Zn

2 ×Zn
4

is the coordinates-wise extension of the function from R to Z2Z4.

Example 1. Let c = 0 1 u v ∈ R be a codeword of code. Find Lee weight, Generalized Lee weight and
Chinese Euclidean weight of c

1. dL(c) = dL(0 1 u v) = dL(0) + dL(1) + dL(u) + dL(v) = 0 + 1 + 2 + 2 = 5.

2. dGL(c) = dGL(0 1 u v) = dGL(0) + dGL(1) + dGL(u) + dGL(v) = 0 + 2 + 2 + 2 = 6.

3. dCE(c) = dCE(0 1 u v) = dCe(0) + dCE(1) + dCE(u) + dCE(v) = 0 + 1 + 2 + 3 = 6.

3 Covering Radius and Repetition Codes R
Let d be the distance of the codeword of a code C in R with respect to Hamming weight, Lee weight,
Generalized Lee weight and Chinese Euclidean weight. The covering radius of a code C in R is given by

rd(C) = max
r∈Rn

{
min
c∈C

{d(r, c)}
}
.

Computing covering radius of codes in R, for useful, the Mattson result in [13].

Let C be the q-ary repetition code over a finite field Fq = {α0 = 0, α1 = 1, α2, α3, · · · , αq−1} and C =
{ᾱ|α ∈ Fq}, where ᾱ = αα · · ·α and it’s the parameter of C is an [n, 1, n] code. In [14], the covering radius

of C is ⌊n(q−1)
q ⌋. Using above result, it can be found that the covering radius of block of size n repetition

code [n(q− 1), 1, n(q− 1)] generated by G = [

n︷ ︸︸ ︷
11 · · · 1

n︷ ︸︸ ︷
α2α2 · · ·α2 · · ·

n︷ ︸︸ ︷
αq−1αq−1 · · ·αq−1] is ⌊n(q−1)2

q ⌋, since it

will be equivalent to a repetition code of length (q − 1)n.
In R, there are two types of repetition codes of length n viz.
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1. unit repetition code CI : [n, 1, dH = n, dL = n, dGL = n, dCE = n] generated by GI = [

n︷ ︸︸ ︷
11 · · · 1]

2. zero repetition code CII : (n, 2, dH = n, dL = 4n, dGL = 4n, dCE = 4n) generated by GII =

[

n︷ ︸︸ ︷
u2u2 · · ·u2] and CIII : (n, 4, dH = n, dL = 2n, dGL = 2n, dCE = 2n) generated by GIII =

[

n︷ ︸︸ ︷
u uv u uv · · ·u uv] or [

n︷ ︸︸ ︷
uv u uv u · · ·uv u]. The code generated by [u u · · ·u] and [uv uv · · ·uv] are

equivalent to the code CIII .

Theorem 3.1. 1. rL(CI) =
3n
2 ,

2. rL(CII) = 2n and

3. n ≤ rL(CIII) ≤ 2n.

Proof. If x ∈ Rn with ω0 times 0′s, ω1 times 1′s, ω2 times 2′s, ω3 times 3′s ω4 times 4′s, ω5 times 5′s, ω6 times
6′s and ω7 times 7′s in x and ω0+ω1+ω2+ω3+ω4+ω5+ω6+ω7 = n. The code ci ∈ {α(CI)|α ∈ R}, i = 0 to 7.
Then

dL(x, c0) = wtL(x− 00 · · · 0)
= 0ω0 + 1ω1 + uω2 + vω3 + u2ω4 + uvω5 + v2ω6 + v3ω7

dL(x, c0) = n− ω0 + ω2 + 3ω4 + ω6.
dL(x, c1) = wtL(x− 11 · · · 1)

= v3ω0 + 0ω1 + 1ω2 + uω3 + vω4 + u2ω5 + uvω6 + v2ω7

dL(x, c1) = n− ω1 + ω3 + 3ω5 + ω7.

Similarly,
dL(x, c2) = n− ω2 + ω0 + ω4 + 3ω6,

dL(x, c3) = n− ω3 + ω5 + 3ω7 + ω1,

dL(x, c4) = n− ω4 + 3ω0 + ω2 + ω6

dL(x, c5) = n− ω5 + ω7 + 3ω1 + ω3,

dL(x, c6) = n− ω6 + ω0 + 3ω2 + ω4

and
dL(x, c7) = n− ω7 + ω1 + 3ω3 + ω5.

Therefore, dL(x,CI) = min{dL(x, c0), dL(x, c1), dL(x, c2), dL(x, c3), dL(x, c4),
dL(x, c5), dL(x, c6), dL(x, c7)}.

Since the minimum of data is less than or equal to the average of data and ω0 + ω1 + ω2 + ω3 + ω4 + ω5 +
ω6 + ω7 = n, implies dL(x,CI) ≤ n+ 4n

8 = 3n
2 . Thus, rL(CI) ≤ 3n

2 .

Let x =

t︷ ︸︸ ︷
00 · · · 0

t︷ ︸︸ ︷
11 · · · 1

t︷ ︸︸ ︷
uu · · ·u

t︷ ︸︸ ︷
vv · · · v

t︷ ︸︸ ︷
u2u2 · · ·u2

t︷ ︸︸ ︷
v2v2 · · · v2

t︷ ︸︸ ︷
uvuv · · ·uv

n−7t︷ ︸︸ ︷
v3v3 · · · v3 ∈ Rn, where t = ⌊ n

23 ⌋, then dL(x, c0) = n + 4t, dL(x, c1) = 2n − 4t, dL(x, c2) =
n+4t, dL(x, c3) = 4n−20t, dL(x, c4) = n+4t, dL(x, c5) = n+4t, dL(x, c6) = n+4t and dL(x, c7) = n+4t.
Thus rL(CI) ≥ min{n+ 4t, 2n− 4t, 4n− 20t} = n+ 4t ≥ 3n

2 . Thus rL(CI) =
3n
2 .

Let x =

n
2︷ ︸︸ ︷

u2u2 · · ·u2

n
2︷ ︸︸ ︷

000 · · · 0 ∈ Rn. The code CII = {α(u2u2 · · ·u2) | α ∈ Rn}. Then, rL(CII) ≥ 2n. If, x be
any word in Rn. Therefore, rL(CII) ≤ 2n and hence, rL(CII) = 2n.

For x =

n
2︷ ︸︸ ︷

uu · · ·u

n
2︷ ︸︸ ︷

00 · · · 0 ∈ Rn and the code ci ∈ {α(CIII)|α ∈ R} generated by [uu · · ·u] is an (n, 4, 2n)
code. Thus, by definition of covering radius rL(CIII) ≥ n. Let x be any word in Rn. Then rL(CIII) ≤ 2n
and hence, n ≤ rL(CIII) ≤ 2n.

Theorem 3.2. 1. rGL(CI) = 2n,
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2. rGL(CII) = 2n and

3. n ≤ rGL(CIII) ≤ 2n.

Proof. The proof follows from the Theorem 3.1, by using the generator matrices GI , GII and GIII with
Generalized Lee Weight.

Theorem 3.3. 1. rCE(CI) = 2n,

2. rCE(CII) = 2n and

3. rCE(CIII) = n.

Proof. The proof is the same as the proof of the Theorem 3.1 and the generator matrices GI , GII and GIII

with Chinese Euclidean Weight.

4 Same Size of Blocks Repetition Code

Let G1 = [

n︷ ︸︸ ︷
11 · · · 1

n︷ ︸︸ ︷
vv · · · v

n︷ ︸︸ ︷
v2v2 · · · v2

n︷ ︸︸ ︷
v3v3 · · · v3] be a generated matrix for the four block repetition code each

of size n. The parameters of repetition code BRep4n : [4n, 1, 4n, 4n, 8n, 8n]. Using the generated matrix
G1, obtain

Theorem 4.1. Let C be a code over R generated by the matrix G1, then rL(BRep4n) = 6n, rGL(BRep4n) =
8n and rCE(BRep4n) = 8n.

Proof. In Theorem 3.3 and [13] and the given generator matrix G1, we get

rL(BRep4n) ≥ 6n (1)

Let x = (u1 | u2 | u3 | u4) ∈ R4n where u1, u2, u3, u4 ∈ Rn. Let us take in u1, 0 appears r0 times, 1 appears
r1 times, 2 appears r2 times 3 appears r3 times 4 appears r4 times, 5 appears r5times, 6 appears r6times
and 7 appears r7times, in u2, 0 appears s0 times, 1 appears s1 times, 2 appears s2 times, 3 appears s3
times, 4 appears s4 times, 5 appears s5 times, 6 appears s6 times and 7 appears s7 times, in u3, 0 appears
t0 times, 1 appears t1 times, 2 appears t2 times, 3 appears t3 times, 4 appears t4 times, 5 appears t5 times,
6 appears t6 times and 7 appears t7 times, in u4, 0 appears v0 times, 1 appears v1 times, 2 appears v2
times, 3 appears v3 times, 4 appears v4 times, 5 appears v5 times, 6 appears v6 times and 7 appear v7

times, with
7∑

i=0

ri =
7∑

i=0

si = n =
7∑

i=0

ti =
7∑

i=0

vi and ci ∈ {α(G1)|α ∈ R}. Then

dL(x, c0) = 4n− r0 + r2 + 3r4 + r6 − s0 + s2 + 3s4 + s6 − t0 + st + 3t4 + t6 − v0 + v2 + 3v4 + v6,

dL(x, c1) = 4n− r1 + r3 + 3r5 + r7 − s3 + s5 + 3s7 + s1 − t5 + t7 + 3t1 + t3 − v7 + v1 + 3v3 + v5,

dL(x, c2) = 4n− r2 + r0 + r4 + 3r6 − s6 + s0 + 3s2 + s4 − t2 + t0 + t4 + 3t6 − v6 + v0 + 3v2 + v4,

dL(x, c3) = 4n− r3 + r5 + 3r7 + r1 − s1 + s3 + 3s5 + s7 − t7 + t1 + 3t3 + t5 − v5 + v7 + 3v1 + v3,

dL(x, c4) = 4n− r4 + 3r0 + r2 + r6 − s4 + 3s0 + s2 + s6 − t4 + 3t0 + t2 + t6 − v4 + 3v0 + v2 + v6,

dL(x, c5) = 4n− r5 + r7 + 3r1 + r3 − s7 + s1 + 3s3 + s5 − t1 + t3 + 3t5 + t7 − v3 + v5 + 3v7 + v1,

dL(x, c6) = 4n− r6 + r0 + 3r2 + r4 − s2 + s0 + s4 + 3s6 − t6 + t0 + 3t2 + t4 − v2 + v0 + v4 + 3v6,

dL(x, c7) = 4n− r7 + r1 + 3r3 + r5 − s5 + s7 + 3s1 + s3 − t3 + t5 + 3t7 + t1 − v1 + v3 + 3v5 + v7.

Therefore, dL(x,BRep4n) = min{dL(x, c0), dL(x, c1), dL(x, c2), dL(x, c3), dL(x, c4),
dL(x, c5), dL(x, c6), dL(x, c7)} is less than or equal to 6n.
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Then dL(x,BRep4n) ≤ 6n and hence
rL(BRep4n) ≤ 6n (2)

By (1) and (2), then rL(BRep4n) = 6n.

Similarly,
rGL(BRep4n) = 8n and rCE(BRep4n) = 8n.

The three-block repetition code BRep3n : (3n, 4, 2n, 6n, 8n) generated by

G2 = [

n︷ ︸︸ ︷
uu · · ·u

n︷ ︸︸ ︷
u2u2 · · ·u2

n︷ ︸︸ ︷
uv uv · · ·uv].

Theorem 4.2. Let C be a code over R generated by the matrix G2. Then rL(BRep3n) = 6n, rGL(BRep3n) =
6n and rCE(BRep3n) = 4n.

Proof. Using, Theorem 3.3, and [13] and the given generator matrix G2, the proof follows.

Corollary 1. Let C be a code over R. Then

1. G = [

n︷ ︸︸ ︷
11 · · · 1

n︷ ︸︸ ︷
u2u2 · · ·u2], then rL(BRep2n) = 7n

2 , rGL(BRep2n) = 4n and rCE(BRep2n) = 4n.

2. G = [

n︷ ︸︸ ︷
11 · · · 1

n︷ ︸︸ ︷
uu · · ·u], then rL(BRep2n) = 7n

2 , rGL(BRep2n) = 4n and rCE(BRep2n) = 3n.

3. G = [

n︷ ︸︸ ︷
11 · · · 1

n︷ ︸︸ ︷
uu · · ·u

n︷ ︸︸ ︷
u2u2 · · ·u2], then rL(BRep3n) = 11n

2 , rGL(BRep3n) = 6n and
rCE(BRep3n) = 5n.

4. G = [

n︷ ︸︸ ︷
11 · · · 1

n︷ ︸︸ ︷
vv · · · v

n︷ ︸︸ ︷
v2v2 · · · v2

n︷ ︸︸ ︷
v3v3 · · · v3], then rL(BRep4n) = 6n, rGL(BRep4n) = 8n and

rCE(BRep4n) = 8n.

5. G = [

n︷ ︸︸ ︷
uu · · ·u

n︷ ︸︸ ︷
u2u2 · · ·u2

n︷ ︸︸ ︷
uv uv · · ·uv], then rL(BRep3n) = 6n, rGL(BRep3n) = 6n and

rCE(BRep3n) = 4n.

6. G = [

n︷ ︸︸ ︷
11 · · · 1

n︷ ︸︸ ︷
uu · · ·u

n︷ ︸︸ ︷
vv · · · v

n︷ ︸︸ ︷
u2u2 · · ·u2

n︷ ︸︸ ︷
v2v2 · · · v2

n︷ ︸︸ ︷
uv uv · · ·uv

n︷ ︸︸ ︷
v3v3 · · · v3], then rL(BRep7n) = 12n,

rGL(BRep7n) = 14n and rCE(BRep2n) = 12n.

Proof. The Proof follows from Theorem 3.1, Theorem 3.2 and Theorem 3.3.

5 Different Size of Blocks Repetition Code

Two different size of block repetition code are defined as R (two different blocks of sizem and n respectively):
BRepm+n : [m+n, 1,min{m,m+n},min{2m, 2m+2n},min{4m, 3m+3n},min{2m, 2m+2n}] generated

by G3 = [

m︷ ︸︸ ︷
11 · · · 1

n︷ ︸︸ ︷
u2u2 · · ·u2].

In Corollary 1 can be easily generalized to two different length, using similar arguments to the following

Theorem 5.1. Let C be a code over R generated by the matrix G3, then rL(BRepm+n) = 3m
2 + 2n,

rGL(BRepm+n) = 2m+ 2n and rCE(BRepm+n) = 2m+ 2n.

In four different blocks of repetition code of size m1, m2, m3 and m4 in R, is BRepm1+m2+m3+m4 :
[m1+m2+m3+m4, 1, {(m1+m2+m3+m4),min{(m1+m2+m3+m4), 2(m1+m2+m3+m4)},min{2(m1+
m2 +m3 +m4), 4(m1 +m2 +m3 +m4)}] generated by

G4 = [

m1︷ ︸︸ ︷
11 · · · 1

m2︷ ︸︸ ︷
vv · · · v

m3︷ ︸︸ ︷
v2v2 · · · v2

m4︷ ︸︸ ︷
v3v3 · · · v3].
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Theorem 5.2. Let C be a code and G4 be a generator matrix of C in R, so

rL(BRepm1+m2+m3+m4) =
3

2
(m1 +m2 +m3 +m4),

rGL(BRepm1+m2+m3+m4) = 2(m1 +m2 +m3 +m4),

rCE(BRepm1+m2+m3+m4) = 2(m1 +m2 +m3 +m4).

Proof. Using Theorem 5.1, it can be obtained.

Corollary 2. Let C be a code over R generated by the following generator matrices with covering radius

1. G = [

m1︷ ︸︸ ︷
11 · · · 1

m2︷ ︸︸ ︷
uu · · ·u], then rL(BRepm1+m2) = 3m1

2 + 2m2,
rGL(BRepm1+m2) = 2m1 + 2m2 and rCE(BRepm1+m2) = 2m1 +m2.

2. G = [

m1︷ ︸︸ ︷
11 · · · 1

m2︷ ︸︸ ︷
uu · · ·u

m3︷ ︸︸ ︷
u2u2 · · ·u2], then rL(BRepm1+m2+m3) = 3m1

2 + 2(m2 +m3),
rGL(BRepm1+m2+m3) = 2(m1 +m2 +m3) and rCE(BRepm1+m2+m3) = 2(m1 +m2) +m3.

3. G = [

m1︷ ︸︸ ︷
uu · · ·u

m2︷ ︸︸ ︷
u2u2 · · ·u2

m3︷ ︸︸ ︷
uv uv · · ·uv], then rL(BRepm1+m2+m3) = 2(m1 +m2 +m3),

rGL(BRepm1+m2+m3) = 2(m1 +m2 +m3) and rCE(BRepm1+m2+m3) = m1 + 2m2 +m3.

4. G = [

m1︷ ︸︸ ︷
11 · · · 1

m2︷ ︸︸ ︷
uu · · ·u

m3︷ ︸︸ ︷
vv · · · v

m4︷ ︸︸ ︷
u2u2 · · ·u2

m5︷ ︸︸ ︷
v2v2 · · · v2

m6︷ ︸︸ ︷
uv uv · · ·uv

m7︷ ︸︸ ︷
v3v3 · · · v3],

then rL(BRep

7∑
i=1

mi

) = 6(m1 +m3 +m5 +m7) + 2m4 + 4(m2 +m6),

rGL(BRep

7∑
i=1

mi

) = 8(m1 +m3 +m5 +m7) + 2m4 + 4(m2 +m6) and

rCE(BRep

7∑
i=1

mi

) = 8(m1 +m3 +m5 +m7) + 2m4 + 2(m2 +m6).

Proof. Using Theorem 5.1 and 5.2.

6 Conclusion

This work is for a finite ring with eight elements, that is the constructing new codes by concatenation are
Z2Z4 codes. The estimation of the lower bound and upper bound for each block repetition code in Z2Z4 by
using different distance and also different types of length, same type of length. These codes can be applied
to complex situations encountered in all engineering fields. In future, I will extend this work to mix finite
rings ZmZn(m > 2, n > 4) with all distance.
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