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Abstract: The dyadic square function and the constant Haar multiplier have been estimated linearly with the A2

characteristic of the weight, [w]A2
in the weighted Lebesgue space, L2(w). In this paper, we explore the estimation

of the dyadic variable square function and the estimation of its composition with a constant Haar multiplier. This
work shows that, the weight function, w in the dyadic reverse Hölder class 2, RHd

2 , characterizes the boundedness of
Sw and Sw ◦Tσ . More precisely, our work is concerned with the boundedness of the dyadic variable square function
and the boundedness of its composition from L2(R) to L2(R, w); a single weight case.

Keywords: Weight, Dyadic reverse Hölder class, Dyadic square function, Haar multiplier

1 Introduction
Dyadic operators are generated by Haar functions defined in dyadic intervals, I ∈ D. Out of many dyadic operators,
we focus only on the dyadic variable square function and the constant Haar multiplier. By an estimate of an operator
in the weighted setting, we mean its boundedness in a weighted Lebesgue space Lp(w), 1 < p < ∞, related to the
weight function w.

Estimation of operators in the weighted space(s) in terms of their weighted norms yields “Weighted Inequality”.
Basically, the main problem in the weighted inequality is to determine the existence of a constant “C” such that
the inequality (

∫
X
|Tf(x)|qu(x)dx)

1
q ≤ C(

∫
X
|Tf(x)|pv(x)dx)

1
p governs for all f ∈ Lp(X, dv), and a given

operator T , where u, v are two measures on X , and 1 ≤ p, q < ∞. More precisely, the canonical problem is to
determine the pair of weights u, v in the Euclidean space X = Rn, and the existence of a constant “C” such that
(
∫
Rn |Tf(x)|qu(x)dx)

1
q ≤ C(

∫
Rn |Tf(x)|pv(x)dx)

1
p for all f ∈ Lp(Rn, dv). The problems mentioned above can

be categorized into two classes: the one-weight case, which involves working with a single weight (u = v = w),
and the two-weight case, which involves working with a pair (u, v) of weights. The one-weight case is a subcase of
two-weight settings.

Muckenhoupt [10] was the first to solve the problem for the maximal function M in Rn for one weight case, and de-
duced theAp condition, as the necessary and sufficient condition for its boundedness, although Helson and Szegö [5]
have already in 1960, explored the necessary and sufficient condition for the boundedness of the Hilbert transform in
the weighted L2(w) space, in a different way. Helson-Szegö theorem states that “ the Hilbert transform H is bounded
in L2(w) if and only if w can be expressed as, w = exp{u +Hv}, u, v ∈ L∞, ‖u‖∞ < π

2 ”. Hunt, Muckenhoupt,
and Wheeden [7], in 1973, proved that w ∈ Ap is the necessary and sufficient condition for the boundedness of the
Hilbert transform in Lp(w).

Linear dependency of the weighted norm of an operator to the Muckenhoupt Ap characteristic constant of the corre-
sponding weight function was first shown by Buckley [1], in 1993 for the maximal function. It was the quantitative
characterization. Wittwer [12], theorem 3.1, in 2000 showed that the norm of the martingale transform Tσ in the
weighted L2(w) space depends linearly on the A2 characteristic of the weight, [w]A2 . Hukovic, Trail, and Volberg
[6], in 2000 showed that the same linear bound also hold for the dyadic square function. Independently, Wittwer
[13], in 2002 also proved the same result for the dyadic square function. One can see the chronology of the linear
estimates on L2(w) for w ∈ A2, page 13 in [11].

By including the variable 1
〈w〉2I

w(x), into the classical dyadic square function, we have introduced a variable square

function, Sw given in the preliminaries, and proved that w ∈ RHd
2 is the necessary and sufficient condition for the

boundedness of the function. In addition, we proved that w ∈ RHd
2 is also necessary and sufficient for the bounded-

ness of Sw ◦ Tσ , the composition of the two bounded operators.
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The theory of weighted inequality is essential to many disciplines, including operator theory, the theory of quasi-
conformal mapping, Fourier analysis, complex analysis, factorization theory, PDEs, and many more [11].

2 Preliminaries
In this section, we shall discuss some basic notations and definitions that are used in this paper.

2.1 Weight, Ap condition, maximal function, weighted norm, Dyadic reverse Hölder class
RHd

p

A locally integrable, non-negative, a.e. function, called a weight, is said to belong to Ap, 1 < p < ∞ if it satisfies
the Ap condition:

[w]Ap := sup
Q
〈w〉Q〈(

1

w
)

1
p−1 〉p−1Q <∞,

where the supremum is taken over all cubes having sides parallel to coordinate axes in Rn, and 〈f〉Q := 1
|Q|
∫
Q
f(x)dx

denotes the average of f over Q, and |Q| denotes the Lebesgue measure. The above quantity is also denoted by
‖w‖Ap

, called theAp characteristic constant of the weight. Obviously, for p = 2, theA2 condition is sup
Q
〈w〉Q〈w−1〉Q <

∞.
When p = 1, the class is called the A1 class, and the weight w is said to be in the class, if there exists a posi-
tive constant c, satisfying Mw ≤ cw, almost everywhere, for the uncentered Hardy-Littlewood maximal function
M,Mf(x) := sup

x∈Q
〈|f |〉Q. For the details of weight theory, one can follow [3, 4].

The norm of a function f in the weighted Lp(Rn, w), 1 < p <∞ is defined as:

‖f‖Lp(Rn,w) :=

(∫
Rn

|f(x)|pw(x)dx
) 1

p

<∞.

A weight w is in dyadic reverse Hölder class p, RHd
p if there exists a constant C > 0 such that for every interval

I ∈ D,
〈w〉−1I 〈w

p〉
1
p

I ≤ C, 1 < p <∞,
where I is a dyadic interval of the standard dyadic grid, D := {I = [j2−k, (j+1)2−k) : j, k ∈ Z}. Thus, for p = 2,

the condition becomes 〈w〉−1I 〈w2〉
1
2

I ≤ C.

The smallest constant on the right is denoted by [w]RHd
p

, called the RHd
p− characteristic of the weight w, i.e.,

[w]RHd
p
:= sup

I∈D
〈w〉−1I 〈wp〉

1
p

I ≤ ∞.

2.2 Haar multipliers: constant Haar multiplier, variable Haar multiplier [2, 8]
Formally, Haar multipliers are the Haar analogue of the pseudo-differential operators, replacing trigonometric func-
tions by Haar functions given by

Tsf(x) :=
∑
I∈D

s(x, I)〈f, hI〉hI(x).

The variable symbol s(x, I) is actually σI
(w(x)
〈w〉I

)t
, where {σI}I∈D is a sequence of numbers, σI = ±1, t ∈ R, and

w is a weight. We may have the t-Haar multiplier as:

T tw,σf(x) :=
∑
I∈D

σI

(
w(x)

〈w〉I

)t
〈f, hI〉hI(x),

where hI(x) is the Haar function given by

hI(x) =
1

|I| 12
(
1I+ − 1I−

)
40
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corresponding to the dyadic interval I with its left and right child I− and I+ respectively, and 1I(x) is the charac-
teristic function; 1I(x) = 1 if x ∈ I, and zero otherwise. The set {hI : I ∈ D} is an orthonormal basis of L2(R),
and an unconditional basis of Lp(R), 1 < p <∞ [11].
Basically, we may have two types of Haar multipliers:

• Constant Haar multiplier, Tσf(x) =
∑
I∈D

σI〈f, hI〉hI(x), w ≡ 1 & s(x, I) = σI is independent of t, x also

called the Martingale transform [11], and

• Variable Haar multiplier, T twf(x) =
∑
I∈D

w(x)
〈w〉I 〈f, hI〉hI(x), s(x, I) is dependent on x.

Note that, Tσ is bounded if and only if σ = {σI}I∈D is bounded; Lemma 10 [8], and T tw is bounded if and only if
w ∈ RHd

p ; Theorem 1 [8].

2.3 Dyadic square function, dyadic variable square function

Corresponding to a function f , the dyadic Littlewood-Paley square function is defined as:

Sf(x) :=

(∑
I∈D

|〈f, hI〉|2

|I|
1I(x)

) 1
2

,

where the summation is over all the dyadic intervals in D.
For the function f ∈ Lp, 1 < p < ∞, ‖Sf‖Lp ≈ ‖f‖Lp with equality for p = 2, i.e., isometry in L2(R), namely
‖Sf‖L2 = ‖f‖L2 [9, 11].

For a locally integrable function f , we have introduced the dyadic variable square function as:

Swf(x) :=

(∑
I∈D

w(x)

〈w〉2I
|〈f, hI〉|2

1I(x)

|I|

) 1
2

.

3 Methods

There are many methods, such as the Bellman function method, Jones factorization theorem, Rubio de Francia’s
extrapolation theorem, Sparse operators, etc. to estimate the operators, but we use basic analysis tools to estimate
the dyadic variable square function and its composition with the constant Haar multiplier.

4 Main Results

In this section, we have explored the boundedness of the dyadic variable square function, Theorem 1, and the bound-
edness of the composition of the dyadic variable square function with the constant Haar multiplier, Theorem 2.

Theorem 4.1. The dyadic variable square function Sw is bounded from L2 to L2(w) if and only if w ∈ RHd
2 .

Proof. First assume that, w ∈ RHd
2 . Then, there exists a constant C such that 〈w〉−1I 〈w2〉

1
2

I ≤ C for each I ∈ D,
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and we have

‖Swf‖L2(w) =

(∫
R

∑
I∈D

w(x)

〈w〉2I
|〈f, hI〉|2

1I(x)

|I|
w(x)dx

) 1
2

=

(∑
I∈D

|〈f, hI〉|2

〈w〉2I
1

|I|

∫
I

w2(x)dx

) 1
2

=

(∑
I∈D
|〈f, hI〉|2〈w〉−2I 〈w

2〉I

) 1
2

≤

(∑
I∈D
|〈f, hI〉|2C2

) 1
2

= C

(∑
I∈D
|〈f, hI〉|2

) 1
2

Using the fact that {hI : I ∈ D} is an orthonormal basis for L2(R), it follows that ‖Swf‖L2(w) ≤ C‖f‖L2 . This
proves the boundedness of Sw from L2 to L2(w).

Conversely, assume that Sw : L2 → L2(w) is bounded. Then, there exists a constant C such that ‖Sw(f)‖L2(w) ≤
C‖f‖L2 , for all f ∈ L2. In particular, taking f = hJ for J ∈ D, we have

‖Sw(hJ)‖L2(w) ≤ C‖hJ‖L2 for all J ∈ D.

This implies

(∫
R

∑
I∈D

w(x)

〈w〉2I
|〈hJ , hI〉|2

1I(x)

|I|
w(x)dx

) 1
2

≤ C
(∫

R
h2Jdx

) 1
2

.

Since 〈hJ , hJ〉 = 1, and 〈hI , hJ〉 = 0 for each I ∈ D, I 6= J , the left hand side of the above inequality can be
rewritten as(∫

R

w(x)

〈w〉2J
1J(x)

|J |
w(x)dx

) 1
2

=

(∫
J

w(x)

〈w〉2J
1J(x)

|J |
w(x)dx

) 1
2

=

(
〈w〉−2J

1

|J |

∫
J

w2(x) dx

) 1
2

= 〈w〉−1J 〈w
2〉

1
2

J .

Moreover,
∫
R
h2J(x)dx =

∫
R

1J(x)

|J |
dx =

1

|J |

∫
J

1J(x)dx = 1.

Combining these results, we thus have

〈w〉−1J 〈w
2〉

1
2

J ≤ C

for each J ∈ D, which proves that w ∈ RHd
2 .

Theorem 4.2. Let w be a weight, and suppose Tσ be the Haar multiplier defined by Tσ(f) =
∑
I∈D

σI〈f, hI〉hI ,

where σI ∈ {−1, 1} for each I ∈ D. Then Sw ◦ Tσ is bounded from L2 to L2(w) if and only if w ∈ RHd
2 .

Proof. First assume that, w ∈ RHd
2 . Then we may choose a constant C > 0 such that 〈w〉−1I 〈w2〉

1
2

I ≤ C.
Now, we have 〈Tσf, hI〉 = 〈

∑
I∈D

σI〈f, hI〉hI , hI〉 = σI〈f, hI〉.
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Therefore, we have

‖Sw(Tσf)‖L2(w) =

(∫
R

∑
I∈D

w(x)

〈w〉2I
|〈Tσf, hI〉|2

1I(x)

|I|
w(x)dx

) 1
2

=

(∑
I∈D

|〈f, hI〉|2

〈w〉2I
1

|I|

∫
I

w2(x)dx

) 1
2

; |σI |2 = 1

=

(∑
I∈D
|〈f, hI〉|2〈w〉−2I 〈w

2〉I

) 1
2

≤

(∑
I∈D
|〈f, hI〉|2C2

) 1
2

= C

(∑
I∈D
|〈f, hI〉|2

) 1
2

Since the Haar functions form an orthonormal basis for L2, this gives

‖Sw(Tσf)‖L2(w) ≤ C‖f‖L2 .

Conversely, assume that Sw ◦ Tσ : L2 → L2(w) is bounded. Then, there exists a constant C such that

‖Sw(Tσf)‖L2(w) ≤ C‖f‖L2 , for all f ∈ L2.

Taking f = hJ , for J ∈ D, we have
‖Sw(TσhJ)‖L2(w) ≤ C‖hJ‖L2 .

This implies (∫
R

∑
I∈D

w(x)

〈w〉2I
|〈TσhJ , hI〉|2

1I(x)

|I|
w(x)dx

) 1
2

≤ C.

Note that(∫
R

∑
I∈D

w(x)

〈w〉2I
|〈TσhJ , hI〉|2

1I(x)

|I|
w(x)dx

)1/2

=

(∫
R

w(x)

〈w〉2J
|σJ |2|〈hJ , hJ〉|2

1J(x)

|J |
w(x)dx

)1/2

=

(∫
J

w(x)

〈w〉2J
1J(x)

|J |
w(x)dx

)1/2

; |σJ |2 = 1

=

(
〈w〉−2J

1

|J |

∫
J

w2(x)dx

)1/2

= 〈w〉−1J 〈w
2〉1/2J .

Thus, we have 〈w〉−1J 〈w2〉
1
2

J ≤ C for each J ∈ D, proving that w ∈ RHd
2 .

5 Conclusion
Linear dependence of the weighted norms of classical dyadic square function, and constant Haar multiplier in the
weighted space, L2(w) to the Ap characteristic of the weight w, [w]A2

exists already, in literature. In this research,
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we have proved the dependency of the weighted norm of the dyadic variable square function in L2(w) to the dyadic
reverse Hölder characteristic, [w]RHd

2
of the weight w. Moreover, we have also proved the similar result for the

composition of the dyadic variable function with the constant Haar multiplier. We may also extend this idea to the
variable Haar multiplier for the multilinear case.
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[5] Helson, H., and Szegö, G., 1960, A problem in prediction theory, Annali di Mathematica pure ed applicata,
51(1), 107-138. DOI: https://link.springer.com/article/10.1007/BF02410947

[6] Hukovic, S., Treil, S., and Volberg, A., 2000, The Bellman functions and sharp weighted inequalities for square
functions, Oper. Theory Adv. Appl., 113, 97-113. DOI: https://link.springer.com/content/
pdf/10.1007/978-3-0348-8378-8_9.pdf

[7] Hunt, R., Muckenhoupt, B., and Wheeden, R., 1973, Weighted norm inequalities for the conjugate function and
Hilbert transform, Transactions of the American Mathematical Society, 176, 227-251. DOI: https://www.
ams.org/tran/1973-176-00/S0002-9947-1973-0312139-8/

[8] Katz, N. H., and Pereyra, M. C. 1999, Haar multipliers, paraproducts, and weighted inequalities, Analysis
of Divergence: Control and Management of Divergence Processes, 145-170. DOI: https://www.math.
unm.edu/˜crisp/papers/haar.pdf

[9] Kunwar, I. J., 2018, Multilinear dyadic operators and their commutators, Ann. Univ. Fer-rara
, 64, 111-144. DOI: https://repository.gatech.edu/server/api/core/bitstreams/
6d6d0d23-a868-4ea7-a55e-fb9afefc25ce/content

[10] Muckenhoupt, B., 1972, Weighted norm inequalities for the Hardy maximal function, Transactions of the Math-
ematical Society, 165, 207-226. DOI:https://www.ams.org/journals/tran/1972-165-00/
S0002-9947-1972-0293384-6/S0002-9947-1972-0293384-6.pdf

[11] Pereyra, M. C., 2018, Dyadic harmonic analysis and weighted inequalities: the sparse revolution, The springer
nature link, 2, 159-239. DOI: https://doi.org/10.48550/arXiv.1812.00850

44

https://www.ams.org/tran/1993-340-01/S0002-9947-1993-1124164-0/
https://www.ams.org/tran/1993-340-01/S0002-9947-1993-1124164-0/
https://arxiv.org/pdf/2303.14556
https://arxiv.org/pdf/2303.14556
https://www.sciencedirect.com/bookseries/north-holland-mathematics-studies/vol/116
https://www.sciencedirect.com/bookseries/north-holland-mathematics-studies/vol/116
https://www.scribd.com/document/726164945/Duoandikoetxea-J-Fourier-analysis-AMS-2001
https://www.scribd.com/document/726164945/Duoandikoetxea-J-Fourier-analysis-AMS-2001
https://link.springer.com/article/10.1007/BF02410947
https://link.springer.com/content/pdf/10.1007/978-3-0348-8378-8_9.pdf
https://link.springer.com/content/pdf/10.1007/978-3-0348-8378-8_9.pdf
https://www.ams.org/tran/1973-176-00/S0002-9947-1973-0312139-8/
https://www.ams.org/tran/1973-176-00/S0002-9947-1973-0312139-8/
https://www.math.unm.edu/~crisp/papers/haar.pdf
https://www.math.unm.edu/~crisp/papers/haar.pdf
https://repository.gatech.edu/server/api/core/bitstreams/6d6d0d23-a868-4ea7-a55e-fb9afefc25ce/content
https://repository.gatech.edu/server/api/core/bitstreams/6d6d0d23-a868-4ea7-a55e-fb9afefc25ce/content
https://www.ams.org/journals/tran/1972-165-00/S0002-9947-1972-0293384-6/S0002-9947-1972-0293384-6.pdf
https://www.ams.org/journals/tran/1972-165-00/S0002-9947-1972-0293384-6/S0002-9947-1972-0293384-6.pdf
https://doi.org/10.48550/arXiv.1812.00850


Journal of Nepal Mathematical Society (JNMS), Vol. 8, Issue 1 (2025); J. Nath, C. R. Bhatta

[12] Wittwer, J., 2000, A sharp estimate on the norm of the martingale trans-
form, Math. Res. Letters, 7, 1-12. DOI: https://scispace.com/papers/
a-sharp-estimate-on-the-norm-of-the-martingale-transform-49oqcqkijj

[13] Wittwer, J., 2002, A sharp estimate on the norm of the continuous square function, Amer.
math. Soc., 130(8), 2335-2342. DOI: https://www.ams.org/journals/proc/2002-130-08/
S0002-9939-02-06342-6/S0002-9939-02-06342-6.pdf

45

https://scispace.com/papers/a-sharp-estimate-on-the-norm-of-the-martingale-transform-49oqcqkijj
https://scispace.com/papers/a-sharp-estimate-on-the-norm-of-the-martingale-transform-49oqcqkijj
https://www.ams.org/journals/proc/2002-130-08/S0002-9939-02-06342-6/S0002-9939-02-06342-6.pdf
https://www.ams.org/journals/proc/2002-130-08/S0002-9939-02-06342-6/S0002-9939-02-06342-6.pdf

	Introduction
	Preliminaries
	Weight, Ap condition, maximal function, weighted norm, Dyadic reverse Hölder class RHpd
	Haar multipliers: constant Haar multiplier, variable Haar multiplier  CHMPW, KP
	 Dyadic square function, dyadic variable square function

	Methods
	Main Results
	Conclusion

