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Abstract: This paper examines the idea of partial-S metric spaces, which extend the traditional struc-
ture of S-metric spaces. Within this broader framework, we investigate the issue of discontinuity at fixed
points—a significant problem originally raised by Rhodes’ in the realm of fixed-point theory. We provide
sufficient conditions that ensure the existence of fixed points, even when continuity is not assumed. These
findings broaden the scope of fixed-point theory, making it applicable to asymmetric topological environments
and offering new perspectives on the behavior of discontinuous mappings.
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1 Introduction

The celebrated Banach contraction principle [4] stands as one of the most widely referenced theorems in
fixed point theory, the Banach contraction principle establishes that for a self-mapping T defined on a
complete metric space (Ω, d), if there exists a constant 0 ≤ a < 1 such that

d(Tζ, Tη) ≤ a d(ζ, η) for all ζ, η ∈ Ω,

then T possesses exactly one fixed point ζ∗ ∈ Ω. Moreover, it is well known that any mapping T satisfying
this condition is continuous throughout the space Ω. However, R. Kannan [8] showed that there exist
contractive mappings that possess fixed points without being continuous.

Theorem 1.1. [8] Consider a self-map T on a complete metric space (Ω, d). If for all ζ, η ∈ Ω, the
inequality

d(Tζ, Tη) ≤ b (d(ζ, T ζ) + d(η, Tη))

holds for some constant b satisfying 0 ≤ b < 1
2 , then T admits exactly one fixed point in Ω.

Although Kannan’s contractive mapping is guaranteed to be continuous at its fixed point, Rhoades [13]
raised a significant open problem regarding whether such mappings must be continuous everywhere or
under what additional conditions continuity holds globally. Does there exist a contractive condition en-
suring fixed points without necessitating continuity at them? This question has led to various proposed
solutions. Among them, Pant [5] provided a definitive answer by constructing examples of contractive
mappings—under a Meir-Keeler type condition [10]—that may fail to be continuous at their fixed points
in a metric space (Ω, d).

To address more general settings, Matthews [9] introduced the framework of partial metric spaces, initially
aimed at modeling the denotational semantics of data flow networks. In 1994, he extended the classical
Banach contraction theorem to apply within complete partial metric spaces. Later, Sedghi, Shobe, and
Aliouche [17] (see also [7]) developed the concept of S-metric spaces. Building on both ideas, Simkhah
Asila, Sedghi, and Mitrović [18] first formulated the structure of partial S-metric spaces and subsequently
obtained existence results for common fixed points of weakly increasing mappings in these spaces.
More recently, using a result from Zamfirescu [20], Ozgur and Tas [11] addressed Rhoades’ open problem
in the context of S-metric spaces. The authors formulated a contractive condition sufficient to ensure fixed
point existence, even when the mapping is not continuous at that point.

Theorem 1.2. [11] Let (Ω, S) be a complete S−metric space. Let T : Ω → Ω be a self-map such that for
all ζ, η ∈ Ω
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(i) there exist a function θ : R+ → R+ such that θ(κ) < κ for each κ > 0 and

S(Tζ, Tζ, Tη) ≤ θ(MS
z (ζ, η)).

(ii) for a given ε > 0, there exist δ(ε) > 0 such that ε < MS
z (ζ, η) < ε+ δ(ε) implies S(Tζ, Tζ, Tη) ≤ ε.

Then T has a unique fixed point say ξ ∈ Ω. Moreover, T is continuous at z if and only if lim
ζ→ξ

MS
z (ζ, z) = 0,

where

MS
z (ζ, η) = max{a S(ζ, ζ, η),

b

2
[S(ζ, ζ, T ζ) + S(η, η, Tη)],

c

2
[S(ζ, ζ, Tη) + S(η, η, T ζ)]}

where a, b ∈ [0, 1) and c ∈ [0, 12 ).

2 Preliminaries

Let Ω be a nonempty set. We adopt the following notation: R denotes the real numbers, R+ the positive
reals, and N the natural numbers (positive integers). In [9], Matthews introduced the concept of a partial
metric, formally defined as follows:

Definition 2.1 ([9]). A mapping p : Ω× Ω→ R+
0 is said to define a partial metric on a non-empty set Ω

when it satisfies the following axioms for all elements ζ, η, ξ ∈ Ω:

(PM1) (Identity) ζ = η if and only if p(ζ, ζ) = p(ζ, η) = p(η, η);

(PM2) (Small self-distances) p(ζ, ζ) ≤ p(ζ, η);

(PM3) (Symmetry) p(ζ, η) = p(η, ζ);

(PM4) (Modified triangle inequality) p(ζ, ξ) ≤ p(ζ, η) + p(η, ξ)− p(η, η).

We call (Ω, p) a partial metric space when p is a partial metric defined on the set Ω. It is worth noting
that a partial metric reduces to an ordinary metric when p(ζ, ζ) = 0 for every ζ ∈ Ω.
The notion of an S-metric space was introduced by Sedghi, Shobe, and Aliouche in [17] (see also [7]).

Definition 2.2. [17] Let Ω be a non-empty set. A mapping S : Ω×Ω×Ω→ [0,∞) is said to be S-metric
if the following conditions are satisfied:

(S1) S(ζ, η, ξ) = 0⇔ ζ = η = ξ;

(S2) S(ζ, η, ξ) ≤ S(ζ, ζ, α) + S(η, η, α) + S(ξ, ξ, α) for all ζ, η, ξ, α ∈ Ω.

The pair (Ω, S) in this instance is referred to as the S− metric space.

Lemma 2.3. [17] Let (Ω, S) be an S-metric space. Then we have

(i) S(ζ, ζ, η) = S(η, η, ζ) for all ζ, η ∈ Ω.

(ii) If S(ζ, ζ, η) = 0 then ζ = η.

The notion of a partial S-metric space was originally proposed by M. Simkhah Asila, Shaban Sedghi, and
Zoran D. Mitrović [18], who combined the frameworks of partial metrics and S-metrics to establish common
fixed point theorems for weakly increasing mappings.

Definition 2.4 ([18]). A partial S-metric on a non-empty set Ω is a mapping Sp : Ω × Ω × Ω → [0,∞)
when it satisfies the following axioms for all ζ, η, ξ, α ∈ Ω:

(SP1) Sp(ζ, ζ, ζ) = Sp(η, η, η) = Sp(ξ, ξ, ξ) = Sp(ζ, η, ξ) if and only if ζ = η = ξ;

(SP2) 0 ≤ Sp(ζ, ζ, ζ) ≤ Sp(ζ, ζ, ζ);

(SP3) Sp(ζ, η, ξ) ≤ Sp(ζ, ζ, α) + Sp(η, η, α) + Sp(ξ, ξ, α)− 2Sp(α, α, α).
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The pair (Ω, Sp) is called partial S-metric space.

Note that every S-metric space is also a partial S-metric space. The following example illustrates that the
converse may not be true.

Example 2.5. [18] Let Ω = [0,∞) and Sp : Ω× Ω× Ω→ [0,∞) defined by Sp(ζ, η, ξ) = max{ζ, η, ξ} is a
partial S-metric space but not an S-metric space.

Lemma 2.6. [18] Let (Ω, Sp) be a partial S−metric space. Then we have

(i) Sp(ζ, ζ, η) = Sp(η, η, ζ) for all ζ, η ∈ Ω.

(ii) If Sp(ζ, ζ, η) = 0 then ζ = η.

Definition 2.7. Let (Ω, Sp) be a partial S-metric space. For ε > 0 define

BSp(ζ, ε) = {η ∈ Ω : Sp(ζ, ζ, η) < ε+ Sp(ζ, ζ, ζ)}

is a open ball in (Ω, Sp) center at ζ and radius ε. Each partial S-metric Sp on Ω generate a topology τSp

which has a base the family of open Sp-balls {BSP
(ζ, ε) : ζ ∈ Ω, ε > 0}.

Definition 2.8 ([18]). Let (Ω, Sp) be a partial S-metric space and {ζn} be a sequence in Ω. Then

(i) {ζn} converges to a point ζ ∈ Ω (denoted by ζn → ζ as n→ ∞) if

Sp(ζ, ζ, ζ) = lim
n→∞

Sp(ζn, ζn, ζ) = lim
n→∞

Sp(ζn, ζn, ζn).

(ii) {ζn} is called a Cauchy sequence if and only if lim
n,m→∞

Sp(ζn, ζn, ζm) exists (and is finite). That is,

lim
n,m→∞

Sp(ζn, ζn, ζm) = Sp(ζ, ζ, ζ).

(iii) A partial S-metric space (Ω, Sp) is said to be complete if every Cauchy sequence converges with
respect to τSp

to ζ ∈ Ω.

Remark 2.9. If ζn → ζ as n→∞, then for each ε > 0 there exists n0 ∈ N such that

|Sp(ζn, ζn, ζ)− Sp(ζ, ζ, ζ)| < ε

and
|Sp(ζn, ζn, ζn)− Sp(ζ, ζ, ζ)| < ε

for all n ≥ n0. Hence, for each ε > 0 there exists n0 ∈ N such that

|Sp(ζn, ζn, ζn)− Sp(ζn, ζn, ζ)| < ε

for all n ≥ n0.

Lemma 2.10. [18] Let (Ω, Sp) be a partial S-metric space. Suppose sequence {ζn} sequence in Ω. Then

(i) {ζn} converges to ζ and, ζ is unique.

(ii) each convergent sequence {ζn} is a Cauchy sequence.

S. Sedghi, et al.[16] was first introduced to the idea of Sb-metric spaces, which is defined as follows:

Definition 2.11. [16] Let Ω be a non-empty set and b ≥ 1 is a real number. A function Sb : Ω×Ω×Ω→
[0,∞) is said to be Sb− metric with parameter b if for all ζ, η, ξ, α ∈ Ω the following conditions are satisfied:

(Sb1) Sb(ζ, η, ξ) = 0⇔ ζ = η = ξ;

(Sb2) Sb(ζ, ζ, η) = Sb(η, η, ζ);
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(Sb3) Sb(ζ, η, ξ) ≤ b[Sb(ζ, ζ, α) + Sb(η, η, α) + Sb(ξ, ξ, α)].

The pair (Ω, Sb) in this instance is referred to as the Sb- metric space.

According to the following lemma, the Sb-metric (for b = 2)is generated by partial S-metric.

Lemma 2.12. [18] If (Ω, Sp) is a partial S−metric space, then Ss : Ω× Ω× Ω→ [0,∞) defined by

Ss(ζ, η, ξ) = Sp(ζ, ζ, η) + sp(η, η, ξ) + Sp(ξ, ξ, ζ)− Sp(ζ, ζ, ζ)− Sp(η, η, η)− Sp(ξ, ξ, ξ) (2.1)

is an Sb-metric on Ω, with parameter b = 2.

Lemma 2.13 ([18]). Let (Ω, Sp) be partial a metric space and Ss be the respective Sb−metric introduced
in Lemma 2.12. Then

(i) the sequence {ζn} is a Cauchy in (Ω, Sp) if and only if it is Cauchy in (Ω, Ss).

(ii) (Ω, Sp) is complete if and only if (Ω, Ss) is complete .

(iii) lim
n→∞

Ss(ζn, ζn, ζ) = 0 if and only if Sp(ζ, ζ, ζ) = lim
n→∞

Sp(ζn, ζn, ζ) = lim
n,m→∞

Sp(ζn, ζn, ζm).

Lemma 2.14. [18] Let {ζn} and {ηn} be two sequences convergent to ζ ∈ Ω and η ∈ Ω, respectively, in a
partial Sp-metric space (Ω, Sp). Then

Sp(ζ, ζ, η) = lim
n→∞

Sp(ζn, ζn, ηn).

In particular, Sp(ζ, ζ, η) = lim
n→∞

Sp(ζn, ζn, η) for all η ∈ Ω.

By virtue of a result by Zamfirescu presented in [20], Nihal Ozgur and Nihal Tas [11] found a solution
to Rhoades’ open problem regarding the existence of a contractive condition strong enough to ensure a
fixed point without requiring the mapping to be continuous at that point within the framework of S-metric
spaces. Moreover, recently we studied interpolative contraction and discontinuity at fixed points in partial
metric spaces (see details in [1]). In this paper, we extend the results of [11] to the context of partial
S-metric spaces.

3 Main Results

Consider a partial S-metric space (Ω, d) and T : Ω→ Ω be self map. The number defined as in this section
is indicated by

M
Sp

ξ (ζ, η) = max{a Sp(ζ, ζ, η),
b

2
[Sp(ζ, ζ, T ζ) + Sp(η, η, Tη)],

c

2
[Sp(ζ, ζ, Tη) + Sp(η, η, T ζ)]}

where a, b ∈ [0, 1) and c ∈ [0, 12 ).

Theorem 3.1. Let (Ω, Sp) be a complete partial S-metric space. Let T : Ω → Ω be a self-map such that
for all ζ, η ∈ Ω

(i) there exist a function θ : R+ → R+ such that θ(κ) < κ for each κ > 0 and

Sp(Tζ, Tζ, Tη) ≤ θ(MSp

ξ (ζ, η))

(ii) for a given ε > 0, there exist δ(ε) > 0 such that ε < M
Sp

ξ (ζ, η) < ε+ δ(ε) implies Sp(Tζ, Tζ, Tη) ≤ ε.

Then T has a unique fixed point say u ∈ Ω. Moreover T is continuous at u if and only if

lim
ζ→u

M
Sp

ξ (ζ, ξ) = Sp(u, u, u).
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Proof. Under assumption (i), there exists a mapping θ : R+ → R+ such that θ(κ) < κ for each κ > 0 and

Sp(Tζ, Tζ, Tη) ≤ θ(MSp

ξ (ζ, η))

for all ζ, η ∈ Ω. Using the property of θ, we have

Sp(Tζ, Tζ, Tη) ≤MSp

ξ (ζ, η) (3.1)

where M
Sp

ξ (ζ, η) > 0. We define β = max{a, b
2−b ,

c
2−2c}. Then β < 1. Let ζ0 ∈ Ω. Define

ζn+1 = Tζn = Tnζ0

for all n ∈ N ∪ {0}. If there exist n such that ζn+1 = ζn then ζn is a fixed point of T and result is proved.
Suppose ζn+1 6= ζn for all n ∈ N ∪ {0}. Applying condition (i) along with the inequality (3.1), we derive

Sp(ζn, ζn, ζn+1) = Sp(Tζn−1, T ζn−1, T ζn)

≤ θ(MSp

ξ (ζn−1, ζn))

< M
Sp

ξ (ζn−1, ζn)

= max{a Sp(ζn−1, ζn−1, ζn),
b

2
[Sp(ζn−1, ζn−1, T ζn−1) + Sp(ζn, ζn, T ζn)],

c

2
[Sp(ζn−1, ζn−1, T ζn) + Sp(ζn, ζn, T ζn−1)]}

= max{a Sp(ζn−1, ζn−1, ζn),
b

2
[Sp(ζn−1, ζn−1, ζn) + Sp(ζn, ζn, ζn+1)],

c

2
[Sp(ζn−1, ζn−1, ζn+1) + Sp(ζn, ζn, ζn)]}

If M
Sp

ξ (ζn−1, ζn) = a Sp(ζn−1, ζn−1, ζn). So, we have

Sp(ζn, ζn, ζn+1) < aSp(ζn−1, ζn−1, ζn)

≤ βSp(ζn−1, ζn−1, ζn)

< Sp(ζn−1, ζn−1, ζn).

Therefore,
Sp(ζn, ζn, ζn+1) < Sp(ζn−1, ζn−1, ζn). (3.2)

If M
Sp

ξ (ζn−1, ζn) = b
2 [Sp(ζn−1, ζn−1, ζn) + Sp(ζn, ζn, ζn+1)], then

Sp(ζn, ζn, ζn+1) <
b

2
[Sp(ζn−1, ζn−1, ζn) + Sp(ζn, ζn, ζn+1)]

=⇒ Sp(ζn, ζn, ζn+1) <
b

2− b
Sp(ζn−1, ζn−1, ζn)

≤ βSp(ζn−1, ζn−1, ζn)

< Sp(ζn−1, ζn−1, ζn).

Hence,
Sp(ζn, ζn, ζn+1) < Sp(ζn−1, ζn−1, ζn). (3.3)

If M
Sp

ξ (ζn−1, ζn) = c
2 [Sp(ζn−1, ζn−1, ζn+1) + Sp(ζn, ζn, ζn)], then

Sp(ζn, ζn, ζn+1) <
c

2
[Sp(ζn−1, ζn−1, ζn+1) + Sp(ζn, ζn, ζn)]

=
c

2
[Sp(ζn+1, ζn+1, ζn−1) + Sp(ζn, ζn, ζn)] [∵ Lemma 2.6]

≤ c

2
[Sp(ζn+1, ζn+1, ζn) + Sp(ζn+1, ζn+1, ζn) + Sp(ζn−1, ζn−1, ζn)

− 2Sp(ζn, ζn, ζn) + Sp(ζn, ζn, ζn)] [∵ by using (SP2)]

≤ c

2
[2Sp(ζn+1, ζn+1, ζn) + Sp(ζn−1, ζn−1, ζn)]

=
c

2
[2Sp(ζn, ζn, ζn+1) + Sp(ζn−1, ζn−1, ζn)] [∵ Lemma 2.6]
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Sp(ζn, ζn, ζn+1) <
c

2− 2c
SP (ζn−1, ζn−1, ζn)

≤ βSp(ζn−1, ζn−1, ζn)

< Sp(ζn−1, ζn−1, ζn).

Hence,
Sp(ζn, ζn, ζn+1) < Sp(ζn−1, ζn−1, ζn). (3.4)

Set qn = Sp(ζn, ζn, ζn+1), then by the Inequalities (3.2), (3.3) and (3.4) we have

qn < qn−1 (3.5)

Consequently, the sequence {qn} of positive real numbers is strictly decreasing and has 0 as its greatest
lower bound, whereby

lim
n→∞

qn = q.

If possible, let q > 0, there exist k ∈ N+ such that for all n ≥ k implies

q < qn < q + δ(q). (3.6)

From condition (ii) and qn−1 < qn combined with qn ≤ q (∀n ≥ k) contradicts inequality (3.6). Hence
q = 0. That is,

lim
n→∞

qn = lim
n→∞

Sp(ζn, ζn, ζn+1) = 0.

Our goal is to show that {ζn} is a Cauchy sequence in (Ω, Sp). By using Lemma 2.13, this reduces to
proving {ζn} is Cauchy in (Ω, Ss). Let ε > 0 be given. From inequalities (3.2), (3.3) and (3.4) we have

Sp(ζn, ζn, ζn+1) < βSp(ζn−1, ζn−1,, ζn) < βnSp(ζ0, ζ0, ζ1). (3.7)

Therefore, by Lemma 2.6

0 ≤ Ss(ζn, ζn, ζn+1) = Sp(ζn, ζn, ζn) + sp(ζn, ζn, ζn+1) + Sp(ζn+1, ζn+1, ζn)− Sp(ζn, ζn, ζn)

− Sp(ζn, ζn, ζn)− Sp(ζn+1, ζn+1, ζn+1)

= Sp(ζn+1, ζn+1, ζn) + Sp(ζn, ζn, ζn+1)− Sp(ζn+1, ζn+1, ζn+1)

− Sp(ζn, ζn, ζn)

= Sp(ζn+1, ζn+1, ζn) + Sp(ζn+1, ζn+1, ζn)− Sp(ζn+1, ζn+1, ζn+1)

− Sp(ζn, ζn, ζn) [∵ Lemma 2.6]

≤ 2Sp(ζn+1, ζn+1, ζn)

< 2βnSp(ζ0, ζ0, ζ1) ∀ n ∈ N ∪ {0}
=⇒ lim

n→∞
Ss(ζn, ζn, ζn+1) < 2 lim

n→∞
βnSp(ζ0, ζ0, ζ1) = 0.

By triangle inequality in Sb-metric with b = 2, for m > n we have

Ss(ζn, ζn, ζm) ≤ 2[Ss(ζn, ζn, ζn+1) + Ss(ζn, ζn, ζn+1) + Ss(ζm, ζm, ζn+1)]

= 2[2Ss(ζn, ζn, ζn+1) + Ss(ζn+1, ζn+1, ζm)]

≤ 2[2Ss(ζn, ζn, ζn+1) + 22Ss(ζn+1, ζn+1, ζn+2) + · · ·+ 2m−nSs(ζm−1, ζm−1, ζm)]

= 22Ss(ζn, ζn, ζn+1) + 23Ss(ζn+1, ζn+1, ζn+2) + · · ·+ 2m−n+1Ss(ζm−1, ζm−1, ζm)]

< 23βnSp(ζ0, ζ0, ζ1) + 24βn+1Sp(ζ0, ζ0, ζ1) + · · ·+ 2m−n+2βm−1Sp(ζ0, ζ0, ζ1)

≤ 23βn[1 + 2β + 22β2 + · · · ]Sp(ζ0, ζ0, ζ1)

=
23βn

1− 2β
Sp(ζ0, ζ0, ζ1)

∴ lim
m,n→∞

Ss(ζn, ζn, ζm) = 0.
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Hence, {ζn} is Cauchy sequence in Sb−metric space (Ω, Ss). Since (Ω, Sp) is complete, then from Lemma
2.13, the sequence {ζn} converges in the Sb−metric space (Ω, Ss). Hence, lim

n→∞
Ss(ζn, ζn, u) = 0 for some

u ∈ Ω. So, Sp(u, u, u) = lim
n→∞

Sp(ζn, ζn, u) = lim
n,m→

Sp(ζn, ζn, ζm). That is,

Sp(u, u, u) = lim
n→∞

Sp(ζn+1, ζn+1, u) = lim
n→∞

Sp(Tζn, T ζn, u).

We will show that u is a fixed point of T . Suppose, on the contrary u is not fixed point of T . Then using
the condition (i), the property of θ, and Lemma 2.6, we have

Sp(Tu, Tu, Tζn) ≤ θ(MSp

ξ (u, ζn)) < M
Sp

ξ (u, ζn)

= max{aSp(u, u, ζn),
b

2
[Sp(u, u, Tu) + Sp(ζn, ζn, T ζn)],

c

2
[Sp(u, u, T ζn) + Sp(ζn, ζn, Tu)]}

= max{aSp(ζn, ζn, u),
b

2
[Sp(Tu, Tu, u) + Sp(ζn, ζn, ζn+1)],

c

2
[Sp(Tζn, T ζn, u) + Sp(Tu, Tu, ζn)]}

=⇒ lim
n→∞

Sp(Tu, Tu, Tζn) < max{a lim
n→∞

Sp(ζn, ζn, u),
b

2
[Sp(Tu, Tu, u) + lim

n→∞
Sp(ζn, ζn, ζn+1)],

c

2
[ lim
n→∞

Sp(Tζn, T ζn, u) + lim
n→∞

Sp(Tu, Tu, ζn)]}

=⇒ Sp(Tu, Tu, u) < max{aSp(u, u, u),
b

2
[Sp(Tu, Tu, u) + Sp(u, u, u)],

c

2
[Sp(Tu, Tu, u) + Sp(Tu, Tu, u)]}

≤ max{aSp(u, u, u), bSp(Tu, Tu, u), cSp(Tu, Tu, u)}
< Sp(Tu, Tu, u).

which is contradiction. So u is a fixed point of T . That is, Tu = u.

Uniqueness: Let v be another fixed point of T such that u 6= v. Then from condition (i) and Lemma 2.6,
we have

Sp(u, u, v) = Sp(Tu, Tu, Tv)

≤ θ(MSp

ξ (u, v))

< M
Sp

ξ (u, v)

= max{aSp(u, u, v),
b

2
[Sp(u, u, Tu) + Sp(v, v, Tv)],

c

2
[Sp(u, u, Tv) + Sp(v, v, Tu)]}

= max{aSp(u, u, v),
b

2
[Sp(u, u, u) + Sp(v, v, v)],

c

2
[Sp(u, u, v) + Sp(v, v, u)]}

= max{aSp(u, u, v),
b

2
[Sp(u, u, u) + Sp(v, v, v)],

c

2
[Sp(u, u, v) + Sp(u, u, v)]}

≤ max{aSp(u, u, v),
b

2
[Sp(u, u, v) + Sp(u, u, v)], cSp(u, u, v)}

< Sp(u, u, v)

which is a contradiction. So, u = v. Hence, fixed point of T is unique.
Suppose T is continuous at fixed point u and lim

n→∞
Sp(ζn, ζn, u) = Sp(u, u, u). Then, we have

lim
n→∞

Sp(Tζn, T ζn, Tu) = Sp(Tu, Tu, Tu) = Sp(u, u, u).
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Using condition (SP3), we have

0 ≤ Sp(ζn, ζn, T ζn) ≤ Sp(ζn, ζn, u) + Sp(ζn, ζn, u) + Sp(Tζn, T ζn, u)− 2Sp(u, u, u)

=⇒ 0 ≤ lim
n→∞

Sp(ζn, ζn, T ζn) ≤ lim
n→∞

Sp(ζn, ζn, u) + lim
n→∞

Sp(ζn, ζn, u) + lim
n→∞

Sp(Tζn, T ζn, u)

− 2Sp(u, u, u)

= Sp(u, u, u) + Sp(u, u, u) + Sp(Tu, Tu, u)− 2Sp(u, u, u)

= Sp(u, u, u).

Now,

lim
ζn→u

M
Sp

ξ (ζn, u) = max{a lim
n→∞

Sp(ζn, ζn, u),
b

2
[ lim
n→∞

Sp(ζn, ζn, T ζn) + Sp(u, u, Tu)],

c

2
[ lim
n→∞

Sp(ζn, ζn, Tu) + lim
n→∞

Sp(u, u, T ζn)]}

= max{aSp(u, u, u), bSp(u, u, u), cSp(u, u, u)}
=Sp(u, u, u).

Conversely, suppose lim
ζn→u

M
Sp

ξ (ζn, u) = Sp(u, u, u). Then, we have lim
n→∞

Sp(ζn, ζn, u) = Sp(u, u, u). So

lim
n→∞

Sp(Tζn, T ζn, u) = lim
n→∞

Sp(ζn+1, ζn+1, u)

= Sp(u, u, u)

= Sp(Tu, Tu, u).

Hence T is continuous at fixed point u.

Example 3.2. Let Ω = [0, 1] be equipped with the partial S-metric Sp defined by

Sp(ζ, η, ω) = |ζ − η|+ |ζ − ω|+ |η − ω|.

Here, (Ω, Sp) is a complete partial S-metric space. Define the self-map T : Ω→ Ω by

Tζ =
ζ

2
.

Let θ : R+ → R+ be given by θ(κ) = κ
2 . Clearly, θ(κ) < κ for all κ > 0. Define

M
Sp

ξ (ζ, η) = max{Sp(ζ, ζ, η), Sp(ζ, ζ, T ζ), Sp(η, η, Tη)}.

So,

M
Sp

ξ (ζ, η) = max{2|ζ − η|, |ζ|, |η|}.

Verification of conditions

(i) We verify

Sp(Tζ, Tζ, Tη) = 2

∣∣∣∣ζ2 − η

2

∣∣∣∣ = |ζ − η|.

On the other hand,

θ(M
Sp

ξ (ζ, η)) =
1

2
max{2|ζ − η|, |ζ|, |η|} ≥ |ζ − η|.

Thus, Sp(Tζ, Tζ, Tη) ≤ θ(MSp

ξ (ζ, η)), satisfying condition (i).

(ii) For any ε > 0, choose δ(ε) = ε. Suppose

ε < M
Sp

ξ (ζ, η) < ε+ δ(ε) = 2ε.

Then

Sp(Tζ, Tζ, Tη) = |ζ − η| ≤ 1

2
M

Sp

ξ (ζ, η) < ε,

satisfying condition (ii).
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Fixed Point and continuity

The mapping T has a unique fixed point u = 0, since

T (0) =
0

2
= 0.

For continuity at u = 0, we have

lim
ζ→0

M
Sp

ξ (ζ, 0) = lim
ζ→0

max{2|ζ|, |ζ|, 0} = 0 = Sp(0, 0, 0).

Thus, T is continuous at 0, and the limit condition holds.

This example satisfies all the hypotheses of the theorem, with u = 0 as the unique fixed point of T .

Corollary 3.3. Let (Ω, Sp) be a complete partial S−metric space. Let T : Ω→ Ω be a self-map such that
for all ζ, η ∈ Ω. If

(i) Sp(Tζ, Tζ, Tη) < M
Sp

ξ (ζ, η) with M
Sp

ξ (ζ, η) > 0.

(ii) for a given ε > 0, there exist δ(ε) > 0 such that ε < M
Sp

ξ (ζ, η) < ε+ δ(ε) implies Sp(Tζ, Tζ, Tη) ≤ ε.

Then T has a unique fixed point say u ∈ Ω. Moreover, T is continuous at u if and only if

lim
ζ→u

M
Sp

ξ (ζ, ξ) = Sp(u, u, u).

Proof. Using the similar technique of the Theorem 3.1.

The following theorem demonstrates that the power contraction of the type M
Sp

ξ (ζ, η) allows for disconti-
nuity at the fixed point. Denote

N
Sp

ξ (ζ, η) = max{a Sp(ζ, ζ, η),
b

2
[Sp(ζ, ζ, T

mζ) + Sp(η, η, T
mη)],

c

2
[Sp(ζ, ζ, T

mη) + Sp(η, η, T
mζ)]}

where a, b ∈ [0, 1) and c ∈ [0, 12 ).

Theorem 3.4. Let (Ω, Sp) be a complete partial S−metric space. Let T : Ω → Ω be a self-map such that
for all ζ, η ∈ Ω.

(i) there exist a function θ : R+ → R+ such that θ(κ) < κ for each κ > 0 and

Sp(T
mζ, Tmζ, Tmζ) ≤ θ(NSp

ξ (ζ, η)).

(ii) for a given ε > 0, there exist δ(ε) > 0 such that ε < N
Sp

ξ (ζ, η) < ε+ δ(ε) implies

Sp(T
mζ, Tmζ, Tmη) ≤ ε.

Then T has a unique fixed point say u ∈ Ω. Moreover T is continuous at u if and only if

lim
ζ→u

N
Sp

ξ (ζ, ξ) = Sp(u, u, u).

Proof. By Theorem 3.1, the function Tm has a unique fixed point u. Hence, we have Tu = TTmu = Tm(Tu)
and so Tu is another fixed point of Tm. From the uniqueness of the fixed point we obtain Tu = u. That
is T has unique fixed point u.
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4 Conclusion

In this study, we have explored the concept of partial-S metric spaces as a natural generalization of classical
S-metric spaces. Within this extended framework, we addressed the significant issue of discontinuity at
fixed points, a question originally raised by Rhodes in the context of fixed-point theory. By establishing
sufficient conditions for the existence of fixed points without requiring continuity, we have broadened the
scope of fixed-point theory to include a wider class of mappings and topological structures. These findings
contribute to a deeper understanding of fixed-point phenomena in asymmetric settings and open up new
avenues for further investigation into discontinuous and non-self mappings in generalized metric spaces.
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